List of Figures

Figure 1.1 Wider region where investigations related to Kuk have been undertaken 1
Figure 1.2 Upper Wahgi area 2
Figure 1.3 Jack Golson and Philip Hughes with workmen from Kuk village 10
Figure 2.1 The major regions of the Old World involved in the independent development of food production 30
Figure 2.2 The major regions of the New World involved in the independent development of food production 31
Figure 4.1 Climatic types in the PNG highlands based on rainfall seasonality 61
Figure 5.1 Distribution of wetland management systems across New Guinea 66
Figure 5.2 Distribution of wetland management systems in the highlands of PNG 67
Figure 5.3 Distribution of drainage as an agricultural technique across PNG 68
Figure 5.4 Swamps and catchment areas in the Tari region 69
Figure 5.5 The Haeapugua Swamp wetland field system 70
Figure 5.6 Drain hierarchy at Haeapugua Swamp, Tari region 73
Figure 5.7 Drainage system for mixed taro gardens at Kiripia, upper Kaugel Valley 74
Figure 5.8 Aerial photograph of wetland field systems, Haeapugua Swamp, 1978 75
Figure 5.9 Dani terms for components of the field system in the Grand Valley of the Baliem River 76
Figure 5.10 Aerial photograph of Dani wetland field systems, Grand Valley, 1987 77
Figure 5.11 Clearing a major channel at Haeapugua Swamp with traditional wooden rakes, 1991 78
Figure 5.12 Early lobate field forms and fossil field systems at Haeapugua Swamp, Tari region 79
Figure 6.1 The swamplands of the Wahgi Valley before large-scale drainage began in the 1950s 88
Figure 6.2 Kuk Research Station and its landscape setting, showing the southern catchment of Kuk Swamp 89
Figure 6.3 Looking east down the Wahgi Valley to Kuk from Mt Ambra 89
Figure 6.4 Landforms of Kuk Swamp 90
Figure 6.5 Vertical aerial photograph of Kuk Swamp and its surrounds in 1970 90
Figure 6.6 Oblique aerial photograph of the Kuk Swamp southern catchment, looking NE 91
Figure 6.7 Oblique aerial photograph of the Kuk Swamp southern catchment, looking SSW 91
Figure 6.8 Looking south from the foot of Ep Ridge along drain E7f/g 92
Figure 6.9 Stratigraphic profiles across the eastern half of Kuk Station 93
Figure 6.10 Schematic diagram of the main stratigraphic units and some tephras at Kuk Swamp 94
Figure 6.11 The relative disposition of major stratigraphic units in the SE part of Kuk Swamp 96
Figure 6.12 Oblique aerial photograph of two tephra mounds in block A10 96
Figure 6.13 Stratigraphy viewed from the north in drain A10f/g 97
Figure 6.14 Schematic map depicting the road and block grid at Kuk Research Station 98
Figure 6.T1.1 The alphanumeric code illustrated 99
Figure 6.15 Developing the Station drain and road network east of N–S Rd 3 100
Figure 6.16 Digging the eastern boundary drain of Kuk Station 101
Figure 6.T2.1 From field description to thin section description: linking macro-, meso- and microlevels of stratigraphic analysis 103
Figure 6.T3.1 X-ray absorption images of samples from Kuk 104
Figure 6.17 The organic/inorganic transition in the swamp stratigraphy in drain D7f/g 105
Figure 6.18 Stratigraphy in drain B10c/d, where the grey clay is conspicuous 107
Figure 6.19 Drain A11d/e in the area where grey clay is thickest 107
Figure 6.20 Drain B10e/f where the black clay above grey clay thickens to fill a Phase 2 cultivation feature in the grey clay surface 108
Figure 6.21 The place of ‘new grey clay’ in the stratigraphy of drain A10g/h 108
Figure 6.22 The stratigraphy in drain A11a/b, showing the garden soil above the black clay and the grey clay underneath 108
Figure 6.23 The surface layers on drain A9E, capping garden soil and sealing in a Phase 6 ditch 111
Figure 7.1 Vesicular glass shard from the eruption of Vulcan, Rabaul, 19 September 1994 118
Figure 7.2 The small, beautifully preserved Mt Ambra, 3 km west of the Kuk site 118
Figure 7.3 Theoretical distribution of Tibito Tephra 125
Figure 7.4 Map of volcanic areas in PNG 126
Figure 7.5 Analysis of shards of volcanic glass for tephras at Kuk 128
Figure 7.6 Mineralogical composition of some Kuk tephras and various Bismarck arc volcanic samples 130
Figure 8.1 Location of Time of Darkness legends 134
Figure 9.1 Map of New Guinea showing the location of important archaeological and palaeoecological sites 146
Figure 9.T1.1 Model of pollen dispersal mechanisms 147
Figure 9.T1.2 Common pollen grains and microscopic charcoal from the highlands of PNG 148
Figure 9.T1.3 Example of a pollen spectrum derived from the Tari Basin
Figure 9.T2.1 A typical subfossil insect assemblage
Figure 9.T3.1 Common diatoms in the Kuk Swamp palaeoecological record
Figure 9.T3.2 Summary of dominant diatoms and the proportion of aerophilous and aquatic taxa in the Kuk Swamp palaeoecological record
Figure 9.2 Late Pleistocene to late Holocene stratigraphy, radiocarbon ages and summary pollen diagram based on two cores from Kuk Swamp
Figure 9.3 Terminal Pleistocene to late Holocene composite pollen diagram of archaeological and stratigraphic contexts at Kuk Swamp
Figure 9.4 Palaeoenvironmental reconstruction for the Kuk Swamp basin based on the composite pollen, charcoal and phytolith records
Figure 10.T1.1 Potential macrofossil preservation in three highlands plants
Figure 10.T1.2 Herman Mandui of the PNG National Museum demonstrates wet sieving
Figure 10.T1.3 Transverse section through a burnt 30,000-year-old karuka-type nutshell from Kosipe
Figure 10.T1.4 Ancient gourd rind fragments and seeds of wax gourd from the Kana site
Figure 10.T1.5 Electron micrograph of an aroid-like seed from the 10,000-year-old fill of the Phase 1 palaeochannel, Kundil’s Baret, at Kuk
Figure 10.T2.1 Composite phytolith diagram for samples at Kuk
Figure 10.T2.2 Leaf phytoliths from sugarcane and fossil phytoliths found in the fill of the late Phase 2 curvilinear feature
Figure 10.T2.3 Photographs illustrating discrimination of contemporary and prehistoric Musa spp. phytoliths
Figure 10.T3.1 Use-polish on an ethnographic sago pounder from PNG
Figure 10.T3.2 Retouched flake collected from beneath the grey clay fill of a basin-like Phase 1 feature (c. 10,000 cal. BP) at Kuk
Figure 10.T3.3 Grinding stone recovered from the Phase 1 palaeochannel base of channel 101 (Kundil’s Baret) dating to about 10,000 cal. BP
Figure 11.1 Plan of the SE corner of Kuk Station showing the location of excavations beneath grey clay, the course of channel 101 (Kundil’s Baret) and some isolated features
Figure 11.2 A typical cross-section of channel 101
Figure 11.3 The bed and east bank of channel 101 after excavation at the north end of block A12d in 1975
Figure 11.4 X-radiographic image showing the preservation of original sedimentary stratification, or banding, within the basal fill of channel 101
Figure 11.5 Base of a 1976 excavation trench in block A12b after the removal of grey clay, revealing Phase 1 features dug into the surface beneath
Figure 11.6 A close-up of the saucer-like feature immediately north of the two easterly stake holes in the line of three across the middle of Figure 11.5b

Figure 11.7 Composite base plan of the Phase 1 palaeosurface exposed in excavations in block A12b undertaken in 1975–77 and in 1998

Figure 11.8 A view NE over complex A (of Figure 11.7) after its excavation in 1977

Figure 11.9 Views of a grey clay-filled feature before and after excavation in 1975 at the northern end of block A12c

Figure 11.10 A basin-shaped feature buried under grey clay in the west wall of Station drain A12a/b

Figure 11.11 Taro growing in wet conditions along an in-filled drain at a garden near Mt Ambra

Figure 11.12 Looking east over part of the Phase 1 palaeosurface excavated in 1976, showing the juxtaposition of various feature types, particularly microtopographic drainage features and stakeholes

Figure 11.13 X-radiographic image showing soil formation at the base of a Phase 1 feature

Figure 11.14 The rim fragment of a stone mortar found in the grey clay fill of a Phase 1 basin in 1977

Figure 12.1 The location of sites said to have evidence comparable to Phase 2 at Kuk

Figure 12.2 The courses of Phase 2 palaeochannels in the eastern part of Kuk Station

Figure 12.3 Early Phase 2 palaeochannel courses at Kuk from the air

Figure 12.4 Typical cross-sections of Phase 2 palaeochannels

Figure 12.5 Looking towards a surface dip that marks channel 105 (Kupalg's Baret) crossing a hillock in block C6

Figure 12.6 Kupalg's Baret (channel 105) exposed in profile in the north drain of E–W Rd 1

Figure 12.7 Base plan of two excavation trenches in block A11f showing the 'integrated' type of early Phase 2 palaeosurface

Figure 12.8 The first trench of the Phase 2 excavations shown in Figure 12.7

Figure 12.9 A 1976 excavation in block A11h showing an example of the 'discrete' type of early Phase 2 palaeosurface

Figure 12.10 A shallow pit with stakehole in the NW corner of an excavation in block A12d

Figure 12.11 Basin-like depression in the top of grey clay in the wall of drain A11d/e

Figure 12.12 Stakes propping up banana plants

Figure 12.13 William Thomas on a tree ladder attending to the wrapping of bananas in his garden near Mt Ambra

Figure 12.14 Plan of the sinuous curvilinear feature 504 of late Phase 2 age in block A12b

Figure 12.15 Looking SW along the line of sinuous curvilinear feature 504
List of Figures

Figure 12.16 Aerial view of Warrawau Tea Estate in the upper Wahgi Valley 215
Figure 12.17 Plan of the 1966 and 1977 excavations at the Manton site on Warrawau Tea Estate 216
Figure 12.18 Emptying Trench M at the Manton site 216
Figure 12.19 Records from the 1977 excavations at Mugumamp Ridge in the North Wahgi Swamp 217
Figure 12.20 The mid Holocene palaeosurface exposed in Trench II at Mugumamp 218
Figure 12.21 Looking NE to the Bismarck Range across Yeni Swamp at the Ruti Flats in the lower Jimi Valley 219
Figure 12.22 Archaeological records of the excavations at site MTG at Yeni Swamp 219
Figure 12.23 Records of excavations in 1994 at drain WD3 at Kana near Minj in the middle Wahgi Valley 220
Figure 12.24 Feature 4 at the west end of the north wall of drain WD3 at Kana 220
Figure 13.1 The location of archaeological sites with evidence of drainage networks contemporary with Phase 3 at Kuk 221
Figure 13.2 Plans showing the nature and extent of early and late Phase 3 networks 222
Figure 13.3 Schematic representation of stratigraphic criteria used to group Phase 3 ditches into subphases 223
Figure 13.4 Different types of ditch articulation in Phase 3 networks at Kuk 224
Figure 13.5 Typical cross-sections of palaeochannels of certain and possible Phase 3 age 225
Figure 13.6 Jack Golson recording the profile of channel 107 in drain A11e/f 226
Figure 13.7 Plan showing the course of two certain Phase 3 channels (106 and 107) and three possible channels (102, 103 and 108) across Kuk Station 227
Figure 13.8 A typical early Phase 3 ditch 229
Figure 13.9 A typical late Phase 3 ditch 229
Figure 13.10 Looking along the course of ditch 393 in block A12b 229
Figure 13.11 Looking over Draepi Swamp and the Minjigina Tea Estate at an early stage of its development 231
Figure 13.12 The Tambul spade 232
Figure 13.13 West wall section at the findspot of the small wooden paddle-shaped spade 232
Figure 13.14 A small paddle-shaped spade, comparable to the Tambul spade, in use 233
Figure 13.15 Base plan and cross-section of the 1992 extension of 1991 excavations at site LOJ, Haepugua Swamp, Tari Basin, SHP 235
Figure 14.1 Specimens of Papuana woodlarkiana and a photograph showing damage by Papuana beetles to taro corms harvested at Baisu Corrective Institution 242
Figure 14.2 Map of Kuk Station showing the major disposal channels of Phase 4 248
Figure 14.3 A slot-type field ditch of Phase 4 partly recut on a different line 249
Figure 14.4 Map of the eastern half of Kuk Station showing details of the course of Neringa’s Baret and Moni’s Baret

Figure 14.5 Section across Neringa’s Baret at the south wall of trench 6 in block B10e

Figure 14.6 Section across Neringa’s Baret in the north drain of E–W Rd 1

Figure 14.7 Section across a wide channel complex in the east wall of drain D8e/f, showing the outline of Feature 7

Figure 14.8 Examples of Phase 4 minor field ditches in blocks A10 and A11 in cross-section

Figure 14.9 Bar charts showing the widths of Phase 4 field ditches

Figure 14.10 Bar charts showing the maximum depth (Dmax) and cross-sectional area (CSA) of Phase 4 field ditches

Figure 14.11 Two views of the same slot ditches exposed beneath Phase 6 houses and cut through by the deep perimeter ditches of these

Figure 14.12 Evidence for the intersection of Phase 4 field ditches with the Station drains in blocks A10h and A11a, and reconstruction of the layout of these field ditches in the same area

Figure 14.13 A grid of taro gardens at 2125 m altitude on swampy land by the Kaugel River at Kiripia near Tambul

Figure 15.1 Cross-section of a composite ditch exposed in drain B10e/f

Figure 15.2 The framework of Phase 5 drainage at Kuk Swamp, showing the location of the profiles across the major disposal channel, Wai’s Baret

Figure 15.3 Looking SSE over the sinuous channel that developed along the course of Wai’s Baret in block A9f after the abandonment of swamp drainage for cultivation at Kuk, perhaps around AD 1900

Figure 15.4 Baret draining the SE margins of Kuk Swamp and Korowa’s Baret

Figure 15.5 View SSE showing Wai’s and Simon’s Barets

Figure 15.6 View from the Kuk southern boundary drain showing the course of Simon’s Baret

Figure 15.7 Five cross-sections through Wai’s Baret

Figure 15.8 Cross-section through the tributary channel, Simon’s Baret, in drain A11a/b

Figure 15.9 Three views showing the shape and size of Phase 5 ditches

Figure 15.10 A plan of the excavation in Figure 15.9c, showing the right-angled junction of two Phase 5 field ditches, 392 with 390

Figure 15.11 The depths of a sample of field ditches from late Phase 5 compared to those from the two previous phases, Phase 4 and Phase 3

Figure 15.12 The widths of a sample of field ditches from late Phase 5 compared to examples from Phase 4 and Phase 3

Figure 15.13 Ditch networks of early and late Phase 5 and Phase 6 in blocks A10 and A11

Figure 15.14 The ‘typical’ ditch in late Phase 3, Phase 4 and Phase 5
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 16.1</td>
<td>An example of a large Phase 5 field ditch in the east wall of drain A11a/b that was not reused in Phase 6</td>
<td>300</td>
</tr>
<tr>
<td>Figure 16.2</td>
<td>Looking north over what became in Phase 6 a frontier zone between crop planting and pig pasture</td>
<td>303</td>
</tr>
<tr>
<td>Figure 16.3</td>
<td>Map of the major drainage channels of Phase 6, which replicate those of Phase 5</td>
<td>304</td>
</tr>
<tr>
<td>Figure 16.4</td>
<td>A ground view of Simon’s Baret looking SSE</td>
<td>305</td>
</tr>
<tr>
<td>Figure 16.5</td>
<td>Looking north to the slopes of Ep Ridge across the fossilised evidence of Phase 5 ditches and gardens on land that became pig pasture in Phase 6</td>
<td>307</td>
</tr>
<tr>
<td>Figure 16.6</td>
<td>Cross-section through Korowa’s Baret at drain D9g/h</td>
<td>309</td>
</tr>
<tr>
<td>Figure 16.7</td>
<td>Contrasting examples of Phase 6 field ditches</td>
<td>310</td>
</tr>
<tr>
<td>Figure 16.8</td>
<td>Phase 6 garden ditches</td>
<td>311</td>
</tr>
<tr>
<td>Figure 16.9</td>
<td>Hydraulic gradients along three lines of Phase 5 and Phase 6 drainage</td>
<td>312</td>
</tr>
<tr>
<td>Figure 16.10</td>
<td>Looking north to Ep Ridge from Blong’s Nob across the surface indications of Phase 6 ditches and gardens west and east of drain A9c/d</td>
<td>313</td>
</tr>
<tr>
<td>Figure 16.11</td>
<td>Mapping Phase 6 ditches in block A9</td>
<td>314</td>
</tr>
<tr>
<td>Figure 16.12</td>
<td>The Ambrose/Mumford map of Phase 6 ditches plotted in 1972 in block A9, as shown in Figure 16.11</td>
<td>315</td>
</tr>
<tr>
<td>Figure 16.13</td>
<td>The charred end of a tuber excavated from a hearth in the front part of House B at Kuk</td>
<td>317</td>
</tr>
<tr>
<td>Figure 16.14</td>
<td>Looking across the North Wahgi Swamp between Ep Ridge and Mugumamp Ridge at fossil ditches and cultivations thought more likely to be Phase 5 than Phase 6</td>
<td>320</td>
</tr>
<tr>
<td>Figure 16.15</td>
<td>The changing distribution of upper Wahgi population</td>
<td>321</td>
</tr>
<tr>
<td>Figure 17.1</td>
<td>Looking east over House B at an early stage of excavation</td>
<td>326</td>
</tr>
<tr>
<td>Figure 17.2</td>
<td>A mounded house site revealed at the swamp surface at the southern end of block B9</td>
<td>326</td>
</tr>
<tr>
<td>Figure 17.3</td>
<td>The distribution of known house sites of Phases 5 and 6 in the eastern half of Kuk Swamp</td>
<td>327</td>
</tr>
<tr>
<td>Figure 17.4</td>
<td>Two photographs of a Phase 6 housing area at drain A12c/d</td>
<td>328</td>
</tr>
<tr>
<td>Figure 17.5</td>
<td>Plan of House B and part of C as revealed by excavation in 1972</td>
<td>331</td>
</tr>
<tr>
<td>Figure 17.6</td>
<td>Plan of House F and part of E as revealed by excavation in 1972</td>
<td>333</td>
</tr>
<tr>
<td>Figure 17.7</td>
<td>A men’s round house at a ceremonial ground at the foot of Ep Ridge on the north side of Kuk Swamp</td>
<td>334</td>
</tr>
<tr>
<td>Figure 17.8</td>
<td>Plan of a men’s round house as revealed by excavation in 1972</td>
<td>335</td>
</tr>
<tr>
<td>Figure 17.9</td>
<td>Looking south over the round house of Figure 17.8 after excavation</td>
<td>336</td>
</tr>
<tr>
<td>Figure 17.10</td>
<td>Early morning view of a family house with rounded ends and central doorway</td>
<td>337</td>
</tr>
<tr>
<td>Figure 17.11</td>
<td>Women’s long house with stalling for pigs</td>
<td>338</td>
</tr>
<tr>
<td>Figure 17.12</td>
<td>Newly built women’s house on low-lying ground at Kuk</td>
<td>338</td>
</tr>
</tbody>
</table>
Figure 17.13 A former women’s long house with separate entrances for people and for pigs 339
Figure 17.14 A variety of veranda house at Kuk 339
Figure 17.15 Plan of Houses P, Q and part of A as reconstructed from Ron Lampert’s records of his 1972 and 1973 excavations 343
Figure 17.16 Aerial view just east of north over the completed excavations on Hed Mound 344
Figure 17.17 Periods III–VIII of the archaeological sequence on Hed Mound 345
Figure 17.18 Hed Mound, showing features assigned to Periods I–V 346
Figure 19.1 Ul and El 361
Figure 19.2 New Guinea agricultural implements discussed in the text 362
Figure 19.3 Long-handled implements with paddle-shaped blades from the upper Wahgi 364
Figure 19.4 Long-handled paddle spades in use at an early stage in the preparation of garden beds 365
Figure 19.5 Fully formed garden beds made from the spoil produced by the digging of the garden grid 366
Figure 19.6 Part of the fence line running parallel to Simon’s Baret 370
Figure 19.7 Stake fencing on dryland at Kuk 371
Figure 19.8 Swamp fencing at South Kuk 372
Figure 20.1 Grinding stone (pestle) and large starch (Dioscorea sp.) grain from the residue extraction 377
Figure 20.2 Kuk stone artefacts 378
Figure 20.3 Kuk stone flake and retouched flake with Colocasia esculenta starch grains from its edge 378
Figure 20.4 Core implement with Dioscorea starch grains 379
Figure 20.5 Lower grinding stone fragment which may be the rim of a shaped bowl and a core implement with usewear polish 379
Figure 20.6 Lower grinding stone with anvil pitting 380
Figure 20.7 Two core implements, three flakes with usewear and an upper grinding/pounding/hammerstone 381
Figure 20.8 Possible grinding/pounding stone fragment, a core implement, a grinding stone fragment, a flake tool and a possible axe butt fragment 381
Figure 20.9 A lower grinding/pounding/anvil stone, a grinding stone fragment, a utilised flaked fragment and a core implement 383
Figure 20.10 Two utilised fragments and a core implement 384
Figure 20.11 Oven stones, refitted oven stones, a broken upper grinding stone fragment and a club head fragment 385
List of Figures

Figure 20.12 A ground and polished axe flake recycled as a wood scraper with starch grains on working edge, an upper grinding stone, a grinding stone fragment and a medial axe fragment 385

Figure 20.13 A flake from an edge-ground axe, a medial axe fragment and a retouched flake 386

Figure 20.14 A core implement used for wood scraping, a chert distal flake tool and a core implement 387

Figure 20.15 A flake tool with usewear, a flake tool recycled from an edge-ground axe, a flake with flake tool K/77/S42 recycled from an edge-ground axe, a grinding stone fragment and a ground and polished axe flake 387

Figure 20.16 A core implement, a ground and polished axe fragment, a utilised fragment and a ground and polished adze fragment 388

Figure 20.17 A ground edge axe flake recycled as a wood scraper, a utilised fragment and a grinding stone fragment 388

Figure 20.18 A ground and polished axe 390

Figure 21.1 Quarries with axes represented at Kuk 408

Figure 21.2 Numndi and Kandel with Tuman River axes 412

Figure 21.3 Hagener with Tuman axe 413

Figure 21.4 Hagener with Jimi axe 413

Figure 21.5 Manim Valley rockshelters: quarried stone as a percentage by weight of all axe stone 416

Figure A21.1 Photomicrograph of tholeiitic basalt 417

Figure 22.1 The location of Kuk Station 426

Figure 22.2 The Kuk stone, slab, pillar, stele or obelisk as it has been variously called 432

Figure A22.1 Quartz crystals similar in form to the individual crystals illustrated by Vicedom 434

Figure 23.1 Kuk in 1955, a few years before the start of its recolonisation 437

Figure 23.2 Kawelka territory at Kuk after the alienation of the swampland in 1969 439

Figure 23.3 Kuk in 1970 after the establishment of the Tea Research Station 442

Figure 23.4 South Kuk in 1970 and 1980, showing the expansion in gardening and settlement that had occurred in the intervening 10 years 445

Figure 25.T1.1 Ru Kundil one of the ‘fathers’ of the World Heritage nomination process at the community level 463

Figure 25.T2.1 Map showing the core area and buffer zone of the Kuk Early Agricultural Site 465