List of figures

Figure 2.1. Map showing presumed Neolithic migrations from: 1) the Northern Philippines to the Marianas, and 2) the Marianas to the Bismarck Archipelago. 38

Figure 2.2. Comparison of Marianas pottery designs with Lapita motifs identified by Anson (1983). 42

Figure 2.3. (A) Labyrinth design found in West Pacific Lapita assemblages (see variants in Chiu 2015: Table 6). (B) and (C) Possible rectangular meander design from the Marianas. 44

Figure 2.4. (A) Punctate tool–stamped Achugao sherd from the Bapot–1 site (Saipan) in the Marianas dated to 3200–3080 cal. BP (Petchey et al. 2017). (B) Dentate-stamped sherd from the Malekolon (EAQ) site (Ambitle Island, Bismarck Archipelago). 44

Figure 2.5. Reconstructed vessel forms from early Marianas sites. 46

Figure 2.6. A selection of reconstructed vessels from Early Lapita sites in the Bismarck Archipelago. 47

Figure 3.1. Location of study region in Caution Bay, south coast of Papua New Guinea. 62

Figure 3.2. Topographic map showing location of Moiapu 3 (red) relative to other excavated Caution Bay sites discussed in this paper. 63

Figure 3.3. Topographic map showing location of the Moiapu 3 excavation square (red). Green squares are the nearby Moiapu 2 excavation squares. 64

Figure 3.4. View east (A) and west (B) from Moiapu 3, March 2010. 64

Figure 3.5. Section drawings, Moiapu 3, east and south walls showing backplotted XUs. 66

Figure 3.6. Moiapu 3, after completion of excavation. The orange string aligns with the south wall. (A) East and south walls. (B) West and north walls. 67

Figure 3.7. Schematics for the OxCal single phase model (Bronk Ramsey 2009), based on all the Moiapu 3 radiocarbon determinations. 68

Figure 3.8. Distribution of cultural materials by weight, by XU, Moiapu 3. 70

Figure 3.9. Vertical distribution of stone artefacts by raw material (by number and weight), Moiapu 3. 71

Figure 3.10. Percentages of marine shell taxa by habitat, based on MNI, Moiapu 3. 75

Figure 3.11. Worked shell from Moiapu 3, XU7. (A) Conus sp. broad ring fragment. (B) Retouched and utilised Polymesoda erosa valve fragment. (C) Detail of utilised margin of P. erosa tool magnified 40×. 76

Figure 3.12. Decorated sherds from Moiapu 3. 77

Figure 3.13. Abundance of sea urchin versus mollusc from sea urchin habitats (coral reef flats, sandy seafloor and seagrass meadows), Moiapu 3. 81

Figure 3.14. Taxonomic composition of the vertebrate faunal remains in each of seven Caution Bay assemblages of varying antiquity including pre-ceramic (Tanamu 1 SU6 to SU4), Early Lapita period (Tanamu 1 SU3), terminal Lapita period (Edubu 1), immediately Post-Lapita (Moiapu 3) and ‘historic’ period (Tanamu 1 SU1 to SU2). 82
Figure 4.1. The Island of Anir with the location of Kamgot (ERA).

Figure 4.2a. Plan of Kamgot (ERA) with modern landscape.

Figure 4.2b. Plan of Kamgot – Early Lapita.

Figure 4.2c. Plan of Kamgot – Middle Lapita.

Figure 4.3. Kamgot depositional history.

Figure 4.4. Schematic representation of reef flat/coastal fringe zonation, showing the zones of occurrence for the major species represented in the Kamgot supra-littoral shell assemblage.

Figure 4.5. Graph showing the proportion of midden/cultural shell to in situ natural shell across major test pits at Kamgot.

Figure 4.6. 'Pier dwelling' built into a purpose-built stone platform at Fouia Village, Lau Lagoon, Malaita, Solomon Islands.

Figure 4.7. Dwelling in Langalanga Lagoon, Malaita, Solomon Islands, with limestone and coral boulders bracing sunken piles.

Figure 5.1. Australia, New Guinea and the Coral Sea.

Figure 6.1. The north-east New Guinea area with places mentioned in the text and the study area, Arop/Long Island, highlighted.

Figure 6.2. Arop/Long Island, showing archaeological sites and major settlements.

Figure 6.3. A view towards Poin Kiu and Mt Reamur, Arop/Long Island.

Figure 6.4. Three rim sherds surface collected from Arop/Long: (A) LI–1; (B) LI–2; and (C) LI–3.

Figure 6.5. Micrographs showing mineral inclusions from Arop/Long Island rim sherds.

Figure 6.6. Bivariate plots of Sr/Rb and Zr/Y.

Figure 7.1. General map showing locations and movements discussed.

Figure 7.2. Western Solomons showing locations of intertidal ceramic sites.

Figure 7.3. Multidimensional scaling plot based on \(\Phi_{st} \) distances calculated from mtDNA HV1 sequences from Solomons and reference groups.

Figure 8.1. Vanua Levu and Cakaulevu Barrier Reef with Vorovoro and Kavewa sites identified.

Figure 8.2. Kavewa Lapita site location, excavation plan and Unit 1 stratigraphic profile.

Figure 8.3. Kavewa decorated Lapita ceramics: (A–F, H) dentate-stamped; (G) incised. (A, F) expanded zone marker; (B) fine and densely applied dentate; (D) in-filled triangle; (F) has indistinct stamp mark lower right.

Figure 8.4. Kavewa decorated Lapita ceramics, all dentate-stamped: (A) decorated inside and out plus on lip; (B) two views of flat-bottom tray or bowl; (C) densely applied dentate motifs; (D) incised outline for indistinct stamp; (E) variation of labyrinth motif; (F) possible nose loops for face motif with expanded zone marker.

Figure 9.1. Location map of the Arawe Islands, Papua New Guinea and other Bismarck Archipelago Lapita pottery sites and island groups mentioned in the text and tables.
Figure 9.2. Date ranges proposed for the start of Lapita pottery (68.2 per cent) in the Bismarck Archipelago, Papua New Guinea, in relation to the W–K2 volcanic event and the reoccupation of Garua Island and the Willaumez Peninsula isthmus (95.4 per cent), New Britain.

Figure 9.3. Plan of main dated excavation squares at Makekur on Adwe Island, Arawe Islands, West New Britain Province, Papua New Guinea.

Figure 9.4. Profile of the west face of the original TP21 before extension to 9 m², showing the four main stratigraphic units.

Figure 10.1. General map of the Foué area, positioning the different localities of the site of Lapita.

Figure 10.2. Position of the archaeological pits excavated in February 2015 at locality WKO013 and WKO013A.

Figure 10.3. The backhoe removing a thin layer of archaeological fill in square SD.14.

Figure 10.4. The general stratigraphy identified in the seashore area of locality WKO013A.

Figure 10.5. Motif diversity on carinations of Lapita ceramics recovered in 2015.

Figure 10.6. Set of Lapita decorated sherds from the 2015 excavation.

Figure 10.7. Three-dimensional Lapita ceramic item, with the form of an owl head.

Figure 10.8. Narrow necks of Lapita vessels.

Figure 10.9. Diversity of Lapita rim forms from the 2015 collection.

Figure 10.10. Diversity of stone flakes, some with retouched points.

Figure 10.11. Lapita adze found in square SD.40.

Figure 10.12. Diversity of shell ornaments from the 2015 excavation.

Figure 10.13. Summary of the density of artefacts in the different parts of locality WKO013A excavated in 2015.

Figure 11.1. Vanuatu and north-east Malakula.

Figure 11.2. Section of an area excavation on Uripiv (upper) and Vao Islands showing stratigraphic layering that is broadly found across all small islands of north-east Malakula. The Vao section is 2 m wide.

Figure 11.3. Reconstructed vessel forms and associated dentate-stamped decoration from Vao Island.

Figure 11.4. Reconstructed vessel forms and associated dentate-stamped decoration from Vao Island.

Figure 11.5. Reconstructed vessel forms and associated decoration, both dentate-stamped and incised from Uripiv (a–c, g) and Vao (d–f) Islands.

Figure 12.1. Haddon (1895:97) gives examples of pottery ‘skeuomorphs’ of weaving as illustrated (p. 346) in Plate 4; No. 14 is from a Japanese fret, No. 15 is an Anglo-Saxon fret.

Figure 12.2. Eleven simple plaited designs have ascribed purposes according to Krämer (1926:143), based on the records of Kubary (1895).
Debating Lapita

Figure 12.3. Drawings of two of the restored pots from the original New Caledonia Lapita site (WKO013A) by Karen Coote, in Sand (2007:272).

Figure 12.4. Two Lapita pots from Teouma showing the central decorated area bounded on the lower edge with striated triangular motifs that have been cut to emphasise their shapes in relief.

Figure 13.1. The ‘iconic’ Lapita ‘double face’ motif from RF–2, Reef Islands, Eastern Outer Islands, Solomon Islands.

Figure 13.2. Lapita flat-bottomed dish (TD 2), Teouma, Efate, Vanuatu, showing two different ways of representing hair.

Figure 13.3. The basic concept of the same pot. Although side-by-side because of space considerations, it represents a double-head design.

Figure 13.4. Another flat-bottomed dish (TD 1) from Teouma used as a cover for a burial vessel with a skull placed inside.

Figure 13.5. A double-head vessel from Makue, Aore Island, Vanuatu, with a simpler unfilled skullcap and a schematic lower geometric head with eyes represented above it because of space constraints.

Figure 13.6. Sometimes the upper head transforms into what looks like a kind of headdress, with, in this case, a more rounded than geometric lower head.

Figure 13.7. A design from RF–2 showing skullcap design.

Figure 13.8. Further heads with skullcaps of different designs, from RF–2 (A, B, C) and Watom (D).

Figure 13.9. Various skullcaps from head design fragments, from Teouma (A), Lapita WK0013 (B–E) and RF–2 (F).

Figure 13.10. Headdress designs on top of skullcaps. From Lapita WK0013 (A, B, D) and site SFB, Duke of York Islands, East New Britain (C).

Figure 13.11. An increasing schematisation of the skullcap on a pot from site EFY, Lemau, New Ireland Province, Papua New Guinea.

Figure 13.12. Further simplification of the skullcap to become a continuous band above the head, from Vatcha, Ile des Pins (Golson excavation), New Caledonia.

Figure 13.13. Is this the origin of the double-head design? Design on jade cong tube (M12:98), Fanshan Site, Liang Zhu Culture, Shanghai area, China, dating to 5200–4200 BP, described as ‘A deity and an animal face’.

Figure 13.14. Parallels in the folk art of Taiwan? A piece of indigenous Taiwanese tourist art on a mobile phone holder purchased by Spriggs in 2005 (redrawn, to the left).

Figure 13.15. An Early Metal Age bronze axe, probably from Roti, Lesser Sunda Islands, Indonesia, with anthropomorphic figure with plumed headdress.

Figure 14.1. Sherd K1–5 from Kavewa, Fiji, magnified with the Leica MZ6 stereomicroscope.

Figure 14.2. Image from Olympus LEXT 4000 laser scanning confocal microscope of ceramic sherd K1–5 from Kavewa, Fiji at a magnification of 108x.

Figure 14.3. Image generated from Olympus LEXT 4000 of ceramic sherd Voro10:191 from Vorovoro, Fiji magnified at 108x.
Figure 14.4. Image generated from Olympus LEXT 4000 of ceramic sherd T02–2749 from Nukuleka, Tonga. 280
Figure 14.5. Sherd from the Lapita site (WK0013A) in New Caledonia. 283
Figure 14.6. Sherd 221 from the Lapita site (WK0013A) in New Caledonia. 283
Figure 14.7. Island groups included in the Eastern Lapita Province. 284
Figure 15.1. Jaccard similarity measure of shared motifs among regions. 315
Figure 15.2. Phi correlation measure of shared motifs among regions. 316
Figure 16.1. Main Lapita markers. Motifs can be drawn inside a square, a circle or even an oval. 336
Figure 16.2. Five main large designs of Lapita pottery. 337
Figure 16.3. Main motifs of the two generic groups. Corpus A (left) and B (right). 338
Figure 16.4. Theoretical view of how Lapita potters could have used corpus motifs. 339
Figure 16.5. Main Lapita group markers in the Eastern Province. 342
Figure 16.6. General view of the routes of Corpus A (in green) and B (in red). 343
Figure 17.1. Localisation of Vanuatu and of the islands of Efate and Malakula in particular, with relevant archaeological sites identified. 350
Figure 17.2. Subset of the sherd samples analysed. 356
Figure 17.3. Boxplots illustrating the distribution of the principal component scores for the sites on Efate (top) and Malakula (bottom). 358
Figure 18.1. Two dog teeth and two possible dog bones. 381
Figure 18.2. Pie diagram of fish families from Kamgot Early Lapita. 385
Figure 18.3. The supra-littoral and upper intertidal zone contribute the greatest number of shells within the overall sample. 386
Figure 18.4. Examples of *C. esculenta*-type starches recovered from the Kamgot Lapita sherds. 394
Figure 18.5. Modern reference *C. esculenta* starch granules. 395
Figure 19.1. *Ficus wassa*. 406
Figure 19.2. *Licuala grandis*. 407
Figure 19.3. Wild yam (*Dioscorea nummularia*) populations were most likely devastated by the arrival of predators such as humans and pigs, looking for an easily accessible source of starch. The tubers can be roasted on a fire and do not need detoxification. 408
Figure 20.1. Vanuatu and archaeological sites where fish remains have been recovered. 416
Figure 20.2. Relative proportion of fish remains by fish feeding strategies in nine Lapita sites identified by Butler (1994). 418
Figure 20.3. Location of excavated areas and extent of Lapita site, Uripiv Island. 420
Figure 20.4. Rank order of Uripiv fish families based on NISP (except Diodontidae, which is counted in MNI). 426
Figure 20.5. Changes in fish-capture methods at Uripiv as expressed by the proportion of herbivore and omnivore NISP (MNI in the case of Diodontidae) relative to carnivore NISP (herbivore+omnivore NISP divided by (herbivore+omnivore+carnivore NISP) x 100).

Figure 20.6. Fishhooks from Uripiv and Vao Islands.

Figure 20.7. Location of Lapita sites with fish remains or fishhooks discussed.

Figure 20.8. Relative proportion of fish remains by fish feeding strategies in 14 Lapita sites.

Figure 20.9. One-piece *Trachus* trolling hook-lures from Western Lapita sites and possible two-piece hook from Fiji.

Figure 20.10. Contemporary Uripiv foreshore and canoes.

Figure 20.11. One-piece hooks from Western Lapita sites and Vanuatu.

Figure 21.1. Map of the South-West Pacific (Near and Remote Oceania) and locations of one Pre-Lapita and 32 Lapita and immediately Post-Lapita age archaeological sites with evidence of human hunting and avian extinctions.

Figure 22.1. Lapita Festival 2016. Makaras Longga on the left discusses Lapita with visitors.

Figure 22.2. Lapita Festival 2016. Members of the Futunese community launch a canoe at Teouma Bay as part of the festivities.

Figure 22.3. Lapita sherd presented by Api Malesu at the Teouma Festival of 2016, collected from the western side of the Teouma valley.

Figure 22.4. Lapita Festival 2017 publicity poster.

Figure 22.5. Aerial photo of the 10th Pacific Mini Games stage in centre field during a medal ceremony. Lapita motifs, completed by Siri Seoule of the VCC, surround the stage and cover the access ramps.