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Introduction

Since the 1960s, scientific understanding of our global environment and its climate 
has undergone a remarkable transformation. We are now increasingly aware that the world 
around us is dynamic, and quasi-stable only in the short term. Recognising the challenge of 
human-induced climate change, the Intergovernmental Panel on Climate Change (IPCC) was 
established in 1988 and released its most recent Fourth Assessment Report (AR4) in 2007. The 
AR4 conclusions are startling: By 2100, global temperatures are estimated to increase between 
1°C and 6.5°C compared with 1990, accompanied by a sea level rise of between 0.18 m and 
0.58 m. This relatively large range in projections is partly due to chaotic climate variability and 
to uncertainties in emissions, but another significant factor is the paucity of instrumental data 
with which to test the estimates. A major source of concern is the extent to which the historical 
record captures processes representative of future change.

The above issues are of particular concern for Australia, a country distinguished by lack of 
water and high interannual climate variability, but with historical records extending back to only 
1880 (Nicholls et al. 2006). Future expectations for increasing aridity, variability and population 
concentration in urban and coastal areas represent a complex, uncertain and potentially dangerous 
challenge to Australian society, for which historical records are insufficient to capture the full 
range of the climate system. For instance, climate models predict that subtropical regions will 
expand with an increase in global temperatures (Held and Soden 2006), bringing more arid 
conditions to heavily populated areas (Bengtsson et al. 2006). Recent data, however, indicate 
expansion over the past few decades is of the same order of magnitude (5-8° of latitude) as that 
predicted for the end of this century (Seidel et al. 2008). This shift is associated with a reduction 
of ca. 20% in winter rainfall over the southwest of Western Australia, and the development of 
new water sources for Perth estimated to have already cost more than $500 million (IOCI 



terra australis 34

Chris S.M. Turney436

2002). Within the AR4, perhaps most critical of all for Australia, the future absolute amount 
and seasonality of rainfall across the region are highly uncertain, but seem likely to decline by 
the end of the current century (Christensen et al. 2007).

Past climate change provides a critical baseline against which to compare present and 
future warming by encompassing a broader range of extremes. Most climate reconstructions 
obtained from geological, chemical and biological proxies have published relationships with 
temperature (Mann et al. 1998, 2008; Esper et al. 2002; Moberg et al. 2005). Critically, a few 
measures of precipitation have been reported (e.g. Kershaw et al. 1994; Bowler 1998; Cook and 
van der Kaars 2006; Lough 2007; Cullen and Grierson 2009), but most are from individual 
sites and largely of a qualitative nature, limiting our ability to generate a long-term spatially 
robust reconstruction of past rainfall within Australia. One possibility for resolving this 
apparent impasse is the exploitation of stable isotopes in terrestrial plant material, particularly 
species- and tissue-specific ∂13C, an approach that has been demonstrated to provide a measure 
of the moisture-related conditions under which the tissues formed (e.g. Ehleringer and Cooper 
1988; Farquhar et al. 1989; Turney et al. 1999, 2002). Unfortunately, few plant macrofossils 
(including wood) are found within terrestrial and marine sedimentary sequences across and 
adjacent to the mainland of Australia (D’Costa et al. 1989; Bohte and Kershaw 1999; Moss and 
Kershaw 2007), precluding continuous ∂13C measurements of material through profiles. One 
alternative is charcoal (e.g. Ferrio et al. 2005; Turney et al. 2006).

Charcoal has considerable potential for developing long-term climate reconstructions. 
Firstly, charcoal is a common product from biomass burning and largely recalcitrant in lake 
(Kershaw 1971, 1974, 1975, 1976, 1995; Kershaw et al. 2004; Turney et al. 2004), marine 
(Kershaw et al. 1993; Wang et al. 1999; van der Kaars et al. 2000; Moss and Kershaw 2007) 
and soil (Hopkins et al. 1993; Bird et al. 1999; Lehman et al. 2008) environments, allowing 
preservation on geological timescales (Lynch et al. 2007; Power et al. 2008). Secondly, if charcoal 
is finely disseminated with sediments, its ∂13C composition should reflect the proportions 
of C3 and C4 plants within the local vegetation (primarily controlled by the most effective 
season of rainfall; Hattersley 1983; Polley et al. 1993; Ehleringer et al. 1997) and/or the degree 
of physiological stress on C3 plants as a result of changing moisture availability (Ehleringer 
and Cooper 1988; Turney et al. 1999; Turney et al. 2002). To date, however, although ∂13C of 
charcoal has been measured through selected sedimentary sequences within the Australian 
region (Wang et al. 1999; Turney et al. 2001), demonstrating a quantitative relationship with 
any moisture-related variable has proved elusive. 

Methods

To test the relationship between charcoal isotopic content and moisture, surface soil 
samples were collected from a network of 17 sites spanning a large precipitation gradient 
across Australia (Figure 1 and Table 1), ranging from Buderim and Darwin at >1500 mm/
year, to Marla in South Australia at <200 mm/year. Samples were taken down to a depth of 2 
cm below the surface, in an attempt to provide a long-term average isotopic composition of 
charcoal from each site. In the laboratory, the samples were sieved through a series of meshes 
to isolate the fraction 2 mm and 125 µm. Using a biological microscope, individual fragments 
of charcoal were hand picked.

Importantly, because particulates produced during combustion are a complex mix of variably 
carbonised material (some of which can undergo further oxidation during diagenesis), the direct 
measurement of charcoal particles for ∂13C composition is not appropriate, as incompletely 
carbonised material may distort the values obtained during analysis.  Here, we have applied the 
method outlined by Bird and Gröcke (1997) for isolating oxidation resistant elemental carbon 
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Figure 1. Surface charcoal sampling locations across Australia. Details of numbered sites are given in Table 1. Modified from 
Williams et al. 2009.

Site number Site name Latitude, ˚S Longitude, ˚E ∂13C, ‰ (VPDB)
Annual 
precipitation, mm

1 Barkly Station 19˚42” 135˚49” –23.1 332

2 Pine Creek 13˚49” 131˚49” –27.5 1178

3 Marla 27˚08” 133˚30” –24.9 190

4 Mount Garnet 17˚47” 144˚57” –25.4 759

5 Buderim 26˚42” 153˚04” –26.6 1712

6 Mataranka 14˚56” 133˚04” –25.2 800

7 Renmark 34˚14” 140˚37” –23.1 257

8 Renner 18˚19” 133˚47” –24.7 407

9 Ti Tree 22˚07” 133˚25” –22.6 299

10 Freemantle 32˚02” 115˚45” –25.2 838

11 Margaret River 34˚09” 115˚02” –25.8 1163

12 Pt Augusta 32˚28” 137˚44” –24.7 241

Table 1: Site locations, surface charcoal ∂13C and annual mean precipitation values, with summary statistics.
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(OREC). Elemental carbon is defined here as carbon that survives the chemical isolation 
procedure outlined below.

Charcoal samples extracted from between 2 mm and 125 µm were decarbonated overnight 
using 1N HCl, washed with MilliQTM water, centrifuged and then placed in concentrated HF 
overnight at 60°C to remove silicate material. The remaining material was then washed again 
in MilliQTM water, centrifuged and placed in 0.1N NaOH for three hours at room temperature 
to remove humic acids. Samples were then washed repeatedly in MilliQTM water, until the 
solution became clear, and placed in a K2Cr2O7/H2SO4 solution at 60°C for 14 hours (Bird 
and Gröcke 1997).  The OREC samples were again washed with MilliQTM water, then freeze-
dried.
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Figure 2. Relationship between surface charcoal ∂13C and annual precipitation in Australia.

The stable carbon isotope (∂13C) composition of OREC samples was determined using an 
elemental analyser coupled to a Micromass Prism III mass spectrometer operated in continuous 
flow mode. ∂13C values are expressed as per mille (‰) relative to the international V-PDB 
standard, with a precision of 0.15‰ at 1σ. Duplicate measurements were made and an average 
value taken.

Site number Site name Latitude, ˚S Longitude, ˚E ∂13C, ‰ (VPDB)
Annual 
precipitation, mm

13 Erlunda 25˚11” 133˚12” –23.6 203

14 Dubbo 32˚26” 148˚21” –25.6 590

15 Darwin 12˚40” 131˚04” –26.5 1521

16 Goondawindi 28˚44” 150˚16” –24.0 577

17 Allan's Cave 31˚36” 129˚06” –25.5 248

Statistics

R2 (R2
adj

) 0.57 (0.54)

F value 20.01

P value 0.0004469

Table 1: Continued
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Results and discussion

The isotopic values obtained during this study range from –23.1‰ at Renmark in the 
arid interior of Victoria, to –27.5‰ at Pine Creek in the tropical Northern Territory (Table 
1). Overall, there appears to be a general trend to heavier values in the interior of Australia 
(Figure 1). Assuming the carbonised plant material from the surface soil samples reflects local 
vegetation, the OREC ∂13C values can be used for comparison against long-term climate 
data.  

Typical C3 and C4 ∂13C values range from –22 to –33‰, and –9 to –16‰ respectively 
(Deines 1980). The results obtained fall almost entirely within the range of values expected for 
C3 vegetation and suggest little (if any) carbon derived from C4 photosynthesis is present in 
the OREC samples collected across Australia. If correct, the enriched 13C values are typical of 
C3 plants in moisture-limited environmental conditions (Ehleringer and Cooper 1988; Turney 
et al. 1999), as a result of reduced stomatal conductance and/or altered net assimilation.

To test the relationship between OREC ∂13C values and climate, data were compared with 
bioclimate estimates obtained from each site generated from the prediction system BIOCLIM 
(Busby 1991). BIOCLIM produces up to 35 bioclimatic parameters based on long-term 
climate measurements of maximum and minimum temperature, rainfall, solar radiation and 
pan evaporation. Comparisons were made with all parameters. Although several of the climate 
variables proved highly correlated with surface charcoal OREC ∂13C values, the most robust 
and significant relationship was that obtained against annual precipitation across a range of 260 
mm to 1200 mm (Figure 2 and Table 1). 

We observe a linear and negative correlation between annual precipitation and OREC 
∂13C (Figure 2) (F = 20.01, p < 0.0004469), explaining more than half of the variance (R2 = 
0.57, R2

adj = 0.54). The correlation is highly significant, suggesting that the ∂13C in vegetation 
of the immediate area (as represented by the surface soil charcoal) is strongly influenced by 
the amount of rainfall over the year. This result is consistent with previous studies, which 
have identified the importance of moisture availability in controlling stomatal conductance 
(Ehleringer and Cooper 1988) and the composition of individual Australian species (Miller et 
al. 2001) in the Queensland plant community ∂13C (Stewart et al. 1995). For instance, over a 
1100 mm annual rainfall range, the Queensland study demonstrated a mean 4‰ shift (Stewart 
et al. 1995), comparable to the mean 3‰ difference observed in the charcoal samples collected 
across Australia (Figure 2). 

The mechanism for the changes in ∂13C may be best explained by stomatal conductance 
responses to moisture availability. During growth, under low moisture availability, plant 
stomatal conductance will decrease to minimise water loss, reducing the exchange of carbon 
dioxide between the substomatal cavity and the surrounding atmosphere, thereby decreasing 
the discrimination against 13C relative to 12C (Farquhar et al. 1989). The preliminary results 
reported here, therefore, provide strong support that charcoal ∂13C may offer considerable 
potential for quantifying past changes in precipitation, and suggest the observation made 
within community-averaged ∂13C observed across a rainfall gradient in Queensland (Stewart 
et al. 1995) may be extended to the fossil record.

The above relationship should only be considered a first-order estimate, however. During 
heating, the cellulose and hemicellulose content of plant material form mainly volatile products 
due to the thermal cleavage of sugar units, while lignin dominates the production of charcoal 
since it is not so easily cleaved to lower-molecular-weight fragments. As a result, during 
carbonisation of woody material, increasing temperature progressively depletes the 13C content 
of bulk charcoal by up to 1.3‰ (Turney et al. 2006), consistent with the greater susceptibility of 
cellulose to thermal degradation relative to lignin (Czimczik et al. 2002). Although the OREC 
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is most likely dominated by lignin (Bird and Gröcke 1997), it is unclear whether the isotopic 
fractionation observed in bulk charcoal reflects an increasing proportion of this component in 
the final char and/or there is a genuine fractionation within lignin with changing temperature. 
Another potentially significant limitation of this study is the uncertain age range of the charcoal 
obtained from the surface soil samples. Although the sampling strategy adopted here had the 
advantage of providing an average estimate of surface vegetation ∂13C values, the duration 
represented is unknown and may be of the order of centuries. Remarkably, in spite of these 
issues, there still remains a statistically significant correlation between isotopic content and 
climate, suggesting that if samples were obtained over the same period as meteorological data, 
a more robust relationship may be quantified.

Conclusions

There is a statistically significant relationship between elemental carbon ∂13C obtained from 
‘modern’ surface charcoal and annual precipitation in Australia. Such a relationship is expected 
because of the important role moisture availability plays in the distribution and response of 
flora. In spite of the uncertainties associated with comparing climate parameters derived from 
historic meteorological data and surface charcoal of unknown age, the relationship suggests 
this approach might be used to quantify past changes in rainfall across Australia. Future studies 
focusing on comparing charcoal samples of known age with meteorological data over a common 
period should improve the robustness of future reconstructions. This finding is of particular 
importance in Australia, a country distinguished by lack of water and where few quantified 
methods of precipitation are available to extend historical records beyond 1880.
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