terra australis 25
Terra Australis reports the results of archaeological and related research within the south and east of Asia, though mainly Australia, New Guinea and island Melanesia — lands that remained terra australis incognita to generations of prehistorians. Its subject is the settlement of the diverse environments in this isolated quarter of the globe by peoples who have maintained their discrete and traditional ways of life into the recent recorded or remembered past and at times into the observable present.

Since the beginning of the series, the basic colour on the spine and cover has distinguished the regional distribution of topics as follows: ochre for Australia, green for New Guinea, red for South-East Asia and blue for the Pacific Islands. From 2001, issues with a gold spine will include conference proceedings, edited papers and monographs which in topic or desired format do not fit easily within the original arrangements. All volumes are numbered within the same series.

List of volumes in Terra Australis

Volume 4: Recent Prehistory in Southeast Papua. B. Egloff (1979)
Volume 10: The Emergence of Mailu. G. Irwin (1985)
Volume 14: 30,000 Years of Aboriginal Occupation: Kimberley, North-West Australia. S. O’Connor (1999)
Lithics in the Land of the Lightning Brothers: The Archaeology of Wardaman Country, Northern Territory

Chris Clarkson
National Library of Australia Cataloguing-in-Publication entry

Clarkson, Chris.
Lithics in the land of the lightning brothers : the archaeology of Wardaman Country, Northern Territory.

Bibliography:
ISBN 9781921313288 (pbk.).
ISBN 9781921313295.(online)

930.1099429

Copyright of the text remains with the contributors/authors, 2006. This book is copyright in all countries subscribing to the Berne convention. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be made to the publisher.

Series Editor: Sue O'Connor
Typesetting and design: ANU E Press
Cover: A pair of large striped anthropomorphs from a rockshelter site known as Murduya near the Yingalarri waterhole in Wardaman Country. The image was photographed with the permission of senior Wardaman Traditional Owners present at the time. Photo taken by the author and reproduced with the permission of the Wardaman Aboriginal Corporation.
Back cover map: Hollandia Nova. Thevenot 1663 by courtesy of the National Library of Australia.
Reprinted with permission of the National Library of Australia.
Terra Australis Editorial Board: Sue O'Connor, Jack Golson, Simon Haberle, Sally Brockwell, Geoff Clarke, Ben Marwick
Table of Contents

Foreword xiii
Preface xv
Acknowledgements xvii

1. Defining Research Questions in Northern Australian Lithic Studies 1
 Problems in North Australian Prehistory 1
 Defining the Aims of the Research 6
 Chapter Outline 7

2. Modelling Optimality in Subsistence and Technology 9
 Optimal Foraging Theory 9
 The Organisation of Technology 14
 Design Theory 17
 Toward a Synthesis 22
 Kuhn’s Provisioning Model 23
 Conclusion 25

3. Procedures for Lithic Analysis 27
 Stone Fracture, Knapping Strategies and Morphological Attributes 27
 Depicting the Core and Flake Reduction Process 32
 Analysing Artefact Form 37
 Conclusion 38

4. Wardaman Country: Physiography and Climate Change 41
 Overview of the Region 41
 The Distribution and Quality of Raw Materials 46
 The Differential Distribution of Resources in the Landscape 49
 Climate Change 49
 Climatic Variability 51
 Implications of ENSO-Driven Variability for the Study Region 52
 Conclusion 54

5. The Sites: Nimji, Garnawala 2, Gordolya and Jagoliya 55
 Nimji (Ingaladdi) 55
 Garnawala 2 67
 Jagoliya 72
 Gordolya 77
 Conclusion 82

6. Reduction Sequences: Artefact Form and Manufacturing Technology in Wardaman Country 83
 Documenting Reduction Sequences: Core Reduction 83
 Flake Reduction 88
 Retouched Flakes 94
 Reduction Sequences and Tool Design 126
 Conclusion 127

7. Change and Continuity in Stone Artefact Manufacture 129
 Building a Regional Technological Database 129
List of Figures

1.1. The location of the study region in relation to major physiographic features and the edge of the semi-arid zone. 2
1.2. Common implement types discussed in the text (backed artefact reproduced from Hiscock and Attenbrow (2005a) with permission). 3
1.3. Distribution map of common retouched implement forms in Australia (modified from Hiscock 1994b). 4
2.1. The Horn (1968) geometric model of optimal dispersion. Optimal settlement locations (triangles) are predicted for stable/evenly dispersed environments (solid circles), and for mobile/clumped environments (open circles). The mean round-trip travel cost from settlement to resource locations, weighted by the probability of locating the resource, is given by d. 11
2.2. Illustration of the relationship between stochastic variation and risk sensitivity, after Fitzhugh (2001). A: hypothetical return rate from foraging over time, B: sigmoid curve representing utility / time (gain rate) for foraging. 23
3.1. Types and features of fracture initiation and termination (after Andrefsky 1998; Cotterell and Kamminga 1987). A: fracture variables, B: formation of a hertzian cone, C: fracture initiations, and D: fracture terminations. 28
3.2. Fracture features often found on the ventral and dorsal faces of a conchoidal flake (reproduction is by courtesy of the Trustees of the British Museum). 29
3.3. The effects of increasing or decreasing platform angle and platform thickness on flake size. 30
3.4. An ‘event tree’ describing the sequence of manufacturing actions and the frequencies attached to each conceptual stage of the process. Reproduced from Bleed (2001). 34
3.5. The Index of Invasiveness (from Clarkson 2002b). 36
3.6. The geometric index of unifacial reduction (GIUR). 36
3.7. Measurement procedures for describing flake shape. A: angle of the lateral margins, and B: curvature of the retouched edge. 39
4.1. Location of Wardaman Country, the survey region and sites discussed in the text. 42
4.2. Permanent waterhole on the Flora River. 43
4.3. Large permanent waterhole along the Victoria River. 43
4.4. Location of the major physiographic units in Wardaman Country. 44
4.5. Remnant of the Victoria River Plateau. 45
4.6. Northwest trending sandstone ridges of the Antrim Plateau Volcanics within the Delamere Plains and Benches. 45
4.7. Edge of the Sturt Plateau. 46
4.8. View over the Daly River Basin toward the distant hills of the Victoria River Plateau. 46
4.9. Location of the Antrim Plateau Volcanics and encapsulated sandstone ridges that are frequently associated with quartzite outcrops and gibbers. 47
4.10. Map showing the location of different chert sources in Wardaman Country. 48
4.11. Calibrated radiocarbon ages (solid line) for each of the excavated sites in the region based on the lowest date, as well as the estimated basal age (dashed line) of each site determined using linear regression. 50
4.12. The timing of major wet and dry phases for several regions of Australia and other selected locations during the Holocene (from Schulmeister and Lees 1995). 51
5.1. Nimji at the time of Mulvaney’s 1966 excavation (courtesy of John Mulvaney). 56
5.2. View of the floor from the brow of the shelter (courtesy of Colin Macdonald). 57
5.3. Plan of Nimji rockshelter showing the location of the 1963 and 1966 excavation trenches, the location of the squares analysed by Cundy (1990), and the location of major rock art panels.

5.4. North-south and east-west cross-sections of the Nimji sandstone residual, passing through the excavated trenches.

5.5. The 1966 AB trench at the completion of the excavation (courtesy of John Mulvaney).

5.6. Section drawings of the 1963 trench, redrawn from Mulvaney’s originals.

5.7. Section drawings for the 1966 trench, redrawn from Mulvaney’s originals.

5.8. Stone artefact numbers from adjacent squares.

5.9. Age-depth curve for all dates from the 1966 AB trench.

5.10. The Garnawala outcrop with open savanna woodland and sand sheet in the foreground.

5.11. View of Garnawala rockshelter from the south, showing the rock ledge and the magnificent rock art panels on the back wall.

5.12. View from the rock ledge down into the 1990 excavation pit. The analysed squares are the deepest ones furthest from the camera (courtesy of Bryce Barker and Bruno David).

5.13. Site plan of Garnawala rockshelter showing the location of the analysed squares P27-Q27.

5.15. Depth-age graph for conventional dates from Garnawala 2, Squares P27-Q28.

5.16. View of Jagoliya rockshelter. The opening to the shelter is beneath the two pandanus trees at the base of the rock.

5.17. View of the shelter floor before excavation. Rock art is visible on the back wall and the excavation squares have been strung out.

5.18. Jagoliya rockshelter. A: site plan showing excavated squares, and B: cross-section through the site and through the excavated squares.

5.19. Stratigraphic section of Jagoliya rockshelter, Squares 8F-9E.

5.20. View into the completed excavation at Jagoliya. Note the dark band formed by Layer V and the massive rubble at the base of the excavation.

5.21. Depth-age curve for Jagoliya. Only conventional radiocarbon dates are plotted.

5.22. View of Gordolya with the excavation in progress in the background (courtesy of Jacqui Collins).

5.23. Site plan of Gordolya rockshelter. A: site plan showing excavated squares, and B: cross-section through the excavated squares.

5.25. Depth-age curve for M squares at Gordolya rockshelter.

6.1. Changes in core morphology over the reduction sequence.

6.2. Changes in core size associated with changes in reduction strategy.

6.3. Event tree summarising the changes in core form that result from several modes of reduction, and their frequencies.

6.4. Histogram of the lengths of flakes found at quarries and inferred to be ‘core-struck’ flakes.

6.5. Changes in flake morphology as reduction continues. Reduction stage is measured using four platform types: cortical, single conchoidal, multiple conchoidal and bipolar. Changes in morphology include: A: % dorsal cortex, B: mean weight, C: platform area, and D: frequency of overhang removal as platform angle increases.

6.6. A: lancet flake, and B: frequency of lancet flakes produced at each stage of reduction.
6.7. Cores found at quarries associated with lancet flakes. Note the large amounts of cortex on both cores, the cortical platform on one (A) and the single conchoidal scar on the platform of the other (B).

6.8. Conjoined quartzite cores and lancet flakes from A: a quarry near Wynbarr waterhole (Site 17). B and C: a quarry near Garnawala 2. Illustration C shows the actual conjoined core, while A and B show reconstructions of the original nodules and the series of flake removals taken as a slice through the centre of the platform.

6.9. Graphs showing the mean and standard deviations for changes in various aspects of scraper morphology as reduction intensity increases, as measured using Kuhn’s GIUR or % perimeter retouched. A: mean retouched edge angle, B: % step terminated retouch, C: % perimeter retouched, D: curvature of the retouched edge, and E: % with notches.

6.10. Graphic depiction of changes to the frequency and evenness with which retouch is distributed across eight segments as retouch increases.

6.12. Graphs showing the selection of a restricted range of flake shapes for scraper manufacture. A: marginal angle and elongation, and B: marginal angle and cross-section.

6.13. Changes in the morphology of points over the reduction sequence. A and B: changes in weight, and C: changes in the % of perimeter retouched.

6.15. Changes in the proximal morphology of points. A: base curvature, and B: % proximal thinning.

6.16. Changes to the location and ordering of retouch over the sequence of point reduction. A: order of retouch as determined from scar superimposition, and B: the evenness of retouch across 16 segments (changes in point shape and size are also represented).

6.17. Variation in blank shape for points.

6.18. Reduction model for points, showing the flexibility in the system to either take points into a bifacial stage if large enough, or continue with unifacial reduction (generally if small).

6.19. Examples of non-point retouch on leiliras and lancets.

6.20. The nature of burinate reduction. A: frequency of burinate retouch on different artefact classes, B: frequency of different initiation surfaces, and C: the frequency of rotation.

6.21. Changes in burin morphology as the number of platforms and scars increases. A: number of orientations, B: changes in mean platform angle, and C: changes in the frequency of step and hinge terminations.

6.22. Changes to the length of burin scars as reduction continues.

6.23. A reduction model for burins. Two common sequences are illustrated. A: the sequence leading to dihedral burins, and B: a sequence of rotations leading to multiple orientations and the removal of substantial numbers of spalls.

6.25. Changes in edge curvature for tulas as reduction continues, measured using flake elongation (length:width ratio).

6.26. Variation in tula shape in comparison with unretouched flakes.

6.27. A reduction sequence for tulas. The A sequence represents continued reduction of the distal end. The B sequence results from turning the tula around and flaking the platform.

6.28. Relationship between burrens and scrapers. A: % perimeter retouched, B: edge curvature (against perimeter of retouch), C: edge angle, and D: Index of Invasiveness.
6.29. Variation in flake shape for burrens.
6.30. Overlay of the variation in retouched implement shapes by class. A: marginal angle plotted against elongation, and B: marginal angle plotted against longitudinal cross-section.
7.1. Method of interdigitation for each pit and each square for Gordolya and Jagoliya.
7.2. Method of interdigitation for each spit and square for Nimji and Garnawala 2.
7.3. Changes in discard rates over the last 15,000 years. A: stone artefact numbers discarded per millennium for each site, and B: number of complete artefacts over 2cm in maximum dimension, bone weights (from Gordolya only), and charcoal and burnt earth weights overlayed over the average number of artefacts deposited over time for all sites.
7.4. Three measures of artefact reduction plotted against changes in artefact discard. A: numbers of core rotations, B: mean retouch intensity for either the GIUR or the Index of Invasiveness, and C: percentage of late stage flake platforms.
7.5. Changes in core morphology over time.
7.6. Changes in flake morphology over time.
7.7. Temporal modes in the discard of various types of pointed flakes.
7.8. Frequency of reduction sequences through time, as well as changing technological diversity for the region over time.
7.9. Frequency of artefact reuse as a possible indicator of the use of situational gear. A: frequency of retouched broken edges, and B: reuse of flakes with old weathered surfaces.
7.10. Changes in raw material richness over time superimposed over changes in pooled artefact discard for all four sites. A: Nimji, B: Garnawala 2, and C: Gordolya.
7.13. Evidence of continuity in stone artefact manufacturing technologies over the last 14,000 years.
7.15. Changes in mean and standard error for several measures of retouched implement size.
7.17. Examples of pressure flaked points from Nimji dating to the last 1,000 years.
List of Tables

5.1. Location of excavated rockshelters in relation to land systems, permanent waterholes and stone sources. 55
5.2. Radiocarbon dates for the 1966 excavation. 62
5.3. Radiocarbon dates from Garnawala 2. 70
5.4. Radiocarbon dates obtained for Jagoliya, Squares 8E-9F. 76
5.5. Dates obtained from the Gordolya excavation. 80
6.1. Mean, standard deviation and coefficient of variation for four measures of core reduction, morphology and reduction technique over the sequence of core rotations. 85
6.2. Mean, standard deviation and coefficient of variation for a further seven measures of core reduction, morphology and reduction technique over the sequence of core rotations. 85
6.3. Changes in flake morphology over the sequence of reduction, as inferred from platform surface type. 91
6.4. t-test results for changes in measures of implement morphology for adjacent GIUR intervals. 98
6.5. Chi-Square statistics for percentages of step terminations and frequency of notching for each of the six intervals of the GIUR. 99
6.6. ANOVA tests of significance for each of the attributes used to measure change in point morphology as reduction increases. 104
6.7. Mean attributes of lancets and lightly retouched points. 109
6.8. t-tests for differences in platform attributes between lancet flakes and lightly retouched points. 110
6.9. ANOVA tests for significant changes in burin morphology as reduction continues. 114
7.1. Break down of core types found in each site per 1000 years. 136
7.2. Numbers of artefacts over time grouped by reduction sequence and combined for all four rockshelters. 142

Appendix B. Descriptions of excavated materials from Nimji

B.1. Stratigraphic descriptions for Squares AB 8-10 from the 1966 excavation at Nimji (Ingaladdi) (after Cundy 1990). 193
B.2. Non-Stone cultural materials from Squares AB9, Nimji. 193
B.3. Non-stone cultural materials from Squares AB10, Nimji. 194
B.4. Stone artefact counts from Squares AB9, Nimji. 195
B.5. Stone artefact counts from Squares AB10, Nimji. 196
B.6. Raw material counts from Squares AB9, Nimji. 197
B.7. Raw material counts from Squares AB10, Nimji. 198

Appendix C. Descriptions of excavated materials from Garnawala 2

C.1. Description of stratigraphic layers from the 1990 and 1991 excavations at Garnawala 2. 199
C.2. Size and stratigraphic association of excavation units from Square Q28, Garnawala 2. 200
C.3. Non-stone cultural materials from Square Q28, Garnawala 2. 201
C.4. Stone artefact counts from Square Q28, Garnawala 2. 202
C.5. Raw material counts from Square Q28, Garnawala 2. 203
Lithics in the Land of the Lightning Brothers

Appendix D. Descriptions of excavated materials from Jagoliya
D.1. Stratigraphic description for the 1998 excavation at Jagoliya. 205
D.2. Spit depths by square for Jagoliya. 206
D.3. Non-stone cultural materials for Square 8E, Jagoliya. 207
D.4. Non-stone cultural materials for Square 8F, Jagoliya. 208
D.5. Non-stone cultural materials for Square 9E, Jagoliya. 209
D.7. Stone artefact counts from Square 8E, Jagoliya. 211
D.8. Stone artefact counts for Square 8F, Jagoliya. 212
D.9. Stone artefact counts for Square 9E, Jagoliya. 213
D.10. Stone artefact counts for Square 9F, Jagoliya. 214

Appendix E. Descriptions of excavated materials from Gordolya
E.1. Stratigraphic descriptions for Square N25, Gordolya. 215
E.2. Non-stone cultural materials from Square M24, Gordolya. 215
E.3. Non-stone cultural materials from Square M25, Gordolya. 216
E.4. Non-stone cultural materials from Square N24, Gordolya. 216
E.5. Non-stone cultural materials from Square N25, Gordolya. 217
E.6. Stone artefact counts from Square M24, Gordolya. 217
E.7. Stone artefact counts for Square M25, Gordolya. 218
E.8. Stone artefact counts for Square N24, Gordolya. 218
E.9. Stone artefact counts for Square N25, Gordolya. 219
E.10. Raw material counts for Square M24, Gordolya. 219
E.11. Raw material counts for Square M25, Gordolya. 220
E.12. Raw material counts for Square N25, Gordolya. 220
E.13. Raw material counts for Square N25, Gordolya. 221