Introduction

Archaeological investigations were carried out at two open sites used by Jirrbal people from the Cedar Creek–upper Tully River area in the contact period. The aim of the contact period archaeological investigations was to identify change and continuity in the following trajectories: (i) material culture and technology; (ii) plant subsistence strategies; and (iii) rainforest settlement patterns. Historical documents and oral traditions describe Aboriginal activities at both sites and document contact period Aboriginal rainforest occupation. These historical sources are drawn on to assist with the interpretation of the archaeological record. The focus of this chapter is the investigations of the Boignjul open site.

Contact period campsites

Jambilan is an area of rainforest located south of Ravenshoe (Fig. 1.1), which has been described as being a popular weekend and Christmas holiday campsite during the 1920s and 1930s for Jirrbal families from Ravenshoe (Duke and Collins 1994). As a young girl in the 1930s, Maisie Barlow remembers staying at Jambilan for a few nights on the way to and from Tully Falls and the coastal lowlands:

We would leave Ravenshoe before Christmas, that’s when our parents had time off from work, and walk down to Tully River, crossing the big river near the falls and continue down to Tully over the Cardwell Range and camp near Tully, it was called Keerea that bora ground. It was a long way and steep hills to climb. Many people would come from all over the Tablelands, Millaa Millaa, Malanda, Atherton, hundreds of people. We would stop at Jambilan, the halfway camp it was called. We camp there for a few days, down the opposite side of the creek away from the ancestor’s camp which was on top of the hill (M. Barlow, pers. comm., 2004).

Jambilan is located close to a permanent water source called Charmillion Creek, and according to Jirrbal oral tradition and historical documentation, many of the creeks in the study area, and beyond, had an allocated campsite at the time of European contact (Coyyan 1915; M. Barlow, pers. comm., 2004). Archaeological surveys were carried out at Jambilan and in surrounding rainforests in an attempt to locate any surviving material culture. A flat area with young rainforest regrowth was identified, but despite reasonable ground surface visibility no archaeological evidence was located aside from several large grinding stones made of basalt found leaning against yellow walnut trees in rainforest. However, the lack of any further surface evidence of material culture resulted in focusing efforts on the location of other sites in the area.
Boignjul

Site location

Duke and Collins (1994) also refer to other Aboriginal campsites in the rainforests south of Ravenshoe that were used in the contact period by Jirrbal people. One of these is located within the Wet Tropics World Heritage Area, approximately 15 km south of Ravenshoe and west of Tully Falls Road. Maisie Barlow named the place *Boignjul*, a name used for a small native lizard that she caught sight of during a site visit (Fig. 1.1). She has no recollections of having visited the site in the past. The *Boignjul* open site was relocated by following a transect line that was cleared sometime in the early 1980s during a forest survey (R. Lockyer, pers. comm., 2004). Just inside the rainforest close to, and south of, the corner of two roads, many fragments of broken ceramic plates and glass bottles, together with assorted plastic items, were found scattered on the forest floor. The scatter continued down a relatively steep hill and terminated at a dry creek bed. Based on the manufacturing style and maker’s marks on the ceramics, they have been dated to the twentieth century (Godden 2003) and are probably there as a result of local residents dumping rubbish. The dry creek bed continues in a southwesterly direction for approximately 350 m to a clearing, approximately 50 x 20 m in size (Fig. 7.1).

Site description

The clearing is located in a saddle between two hills. A gentle slope borders the site to the west, which terminates at a road called Arthur Baillie Road. Bordering the site to the east is a steep slope, with large rocks eroding out onto the surface of the clearing in the southeast corner.

![Figure 7.1 Boignjul: a clearing located in a dry creek bed, in a saddle within tropical rainforest. Source: Photograph by Å. Ferrier.](image-url)

The south end of the clearing is marked by the emergence of a spring, which has caused some erosion. A tree has fallen over as a result of undercutting, and has exposed a soil profile about 2 m deep. The soil type is common in the area and is identified as Yellow Kandosol (McKenzie et al. 2004:246–247). A small creek continues in a southerly direction from its origin at the spring and...
joins Charmillan Creek a few hundred metres away. An archaeological site was identified in the
clearing when a number of complete bottles of various types, numerous glass shards, and fragments
of footwear were found scattered on the forest floor. A closer examination also revealed a small edge-
ground basalt stone axe, one basalt grinding stone, one hammer-stone in the form of a river cobble
and a small number of flaked stone artefacts. No ceramic was found on the surface, which is the
dominant material in the rubbish dump approximately 350 m away. An extensive survey was carried
out around the clearing and along the small creek, where a small cobble was located on a bank near
a small waterfall. The survey continued along the creek to where it joins Charmillan Creek, but no
European or Aboriginal artefacts were found away from the clearing.

Historical background

The late Arthur Baillie, son of the first European settlers in the area south of Ravenshoe, informed
Duke and Collins in the 1990s of an Aboriginal campsite located near the house where he grew up
(Duke and Collins 1994:67). Arthur Baillie was 12 years old when he moved to Ravenshoe in June
1930. He recounted to Duke and Collins that the scrub came as far as Lawyer and Vine Creeks
(north of Jambilan) in those days and that there were Aboriginal camps at these creeks, as well as
Boignjul, slightly further south of Charmillan Creek. Arthur Baillie’s first-hand observations were
documented by Duke and Collins (1994), who report that a clearing was sometimes used by jirrbal
people in the 1930s near the Baillies’ property. The documents show that the camp had traditional
style mijas (huts) thatched with lawyer cane and grass, with a fire inside and a small doorway that
could be closed.

European logging activities

The European history in the study area was outlined in Chapter 2 and established that early
European settlement in the rainforest region was, in part, to exploit the large stands of red cedar
(Toona ciliata). Research on the early logging history in the Cedar Creek–upper Tully River area
was carried out in order to reconstruct the area’s logging history, and provide a historical context
for the European material culture items at Boignjul. Retired timber-cutter and historical informant
Reg Lockyer assisted with the identification of rainforest trees growing on and around Boignjul, and
provided historical information on the chronology and historical methods of logging in areas south
of Ravenshoe.

Logging started in this part of the rainforest region in the mid-1940s and ended in the 1980s with
the listing of the Wet Tropics World Heritage Area. Only selected trees were cut, loaded on trucks
and taken to mills that were located nearby. Tree stumps show that axes, manual saws, and chain
saws were used during different logging phases. Many of the original trees survived for a variety of
reasons. The saw mills were limited in what log lengths they could process; small and ‘ugly’ trees were
left, and the marketability of certain timbers were all factors determining what was cut and what
was left standing (R. Lockyer, pers. comm., 2004). Evidence for logging around Boignjul remains
on the gentle slope that borders the clearing to the west, where some tree stumps can be seen.
The rainforests south of Arthur Baillie Road were only ever selectively cut and steep terrain deterred
the loggers (R. Lockyer, pers. comm., 2004). On the steep hill that borders the clearing in the east,
no evidence for logging is visible and the trees are generally bigger and older, with many black and
yellow walnut trees, as well as quandongs (Elaeocarpaceae), and other rainforest species. This steep
hill terminates at a walking track that leads down to a small waterfall. This walking track is part of a
network of rainforest tracks that jirrbal people followed in the past, though most of them no longer
exist (Duke and Collins 1994; F. Barlow, pers. comm., 2005).

A significant outcome of Reg Lockyer’s visit to Boignjul was the identification and age estimation
of three large trees that grow on the site today. They are Sloanea australis, fast-growing buttressed
rainforest trees, estimated to be around 50 to 60 years old. Therefore, it appears that at the time
logging began in the 1940s, Boignjul was located in a clearing surrounded by rainforest, including
walnut trees and other traditional food trees. It has previously been suggested that rainforest nuts, such as walnuts, were collected and cached by Aboriginal people who would sometimes bury them in the ground or stockpile them in camp for later use (Coyyan 1918; Harris 1978; Mjöberg 1918). Reg Lockyer commented on the relative abundance of black and yellow walnuts around Boignjul:

[quote]
They [Aboriginal people] must have buried some of the walnuts because you would not really get them [walnut trees] growing this far south. Perhaps like the squirrel, they buried them to collect later and did not always remember exactly where they had buried the nuts (R. Lockyer, pers. comm., 2004).
[/quote]

Whether nuts were accidentally left in the ground or deliberately left to encourage certain trees to grow in specific locations to create ‘food-patches’ in the rainforest is not known. Hynes and Chase (1982) have suggested that on Cape York ‘domi-cultures’ existed, where dispersion and local abundance of some types of plant foods were altered because people had discarded fruit or seeds at campsites for generations. This behaviour had produced groves of fruit- or seed-bearing trees at particular places, thereby making access more predictable. It appears that the Aboriginal practice of burying nuts in the rainforest, a method probably partly used to avoid having them eaten by white tailed rats and cassowaries, produced patches enriched with food trees. This is suggested by the rainforests near Boignjul and Jambilan. Once people stopped visiting Boignjul and keeping it clear of the encroaching rainforest, the three large rainforest trees presently growing on the site would have germinated quickly, taking advantage of the open and sunny location. As their canopies rapidly closed the gap, no other plants could compete. In 2004, this clearing was still discernible amongst the surrounding rainforests.

Methods

Establishing a chronology of site use

At the time the site was relocated in mid-2004, a pencil sketch was drawn and a selection of the surface artefacts photographed. Photographs of complete bottles were subsequently analysed to try to interpret time periods of occupation. Apart from complete bottles, brown and clear glass shards, shoe remains, and stone artefacts were also identified on the ground surface. A small number of the glass shards had what appeared to be modified edges, i.e. evidence of usewear, whilst others looked as if they had been deliberately retouched along one edge. No plastic or ceramic artefacts were visible on the surface. One question that presented itself at this stage of the research was whether or not the European artefacts on the surface were the remains of a European logging camp on top of a traditional Aboriginal site, or, a place used by Aboriginal people both in the pre-contact and contact periods, or a combination of Aboriginal and European occupation. Historical documents from the study area show that Aboriginal people were paid for labour with clothes and tobacco and that they traded traditional material culture items in exchange for European items (Coyyan 1914; Mjöberg 1913a). Historical information also demonstrates that the area south of Ravenshoe was a popular holiday destination for jirbal people in the post-contact period. The implications of this history are that the artefacts recovered from Boignjul have the potential to provide new information on contact period Aboriginal material culture.

It has been suggested that the time lag between when an object was manufactured and when it became part of the archaeological record is an important constraint on using European artefacts to interpret the chronology of human occupation at archaeological sites (Adams 2003). Some items would have continued in use for a long time, some were repaired and reused (evident in footwear remains, buttons and glass from the site) or were recycled by some person other than the original purchaser or owner. This is particularly so in remote areas, such as far north Queensland’s rainforest region in the early to mid-twentieth century, where even today ingenious reuse of old and decrepit items of
material culture characterise both European and Indigenous practices. Taking into consideration a time lag between manufacture, use, and discard of the dated historical artefacts, the approximate period of site use reflected in the surface finds is the late 1800s to the 1940s.

Archaeological investigations

The reconstruction of the area's logging history, Aboriginal contact history and the dating of the European artefact assemblage has demonstrated that the surface artefact assemblage was most likely the result of Aboriginal activities. The archaeological record at Boignjul therefore has the potential to provide a small but unique window into Aboriginal activities at an open site, set in a rainforest context in the contact period. On this basis it was decided that archaeological excavations at the site be carried out.

Methods

Archaeological investigations were conducted at the site during a four-week period in November to December 2004. The following methods were employed to facilitate investigations into the contact period Aboriginal occupation of the site:

- drawing a plan of the surface artefact distribution using a 2.5 x 2.5 m grid system;
- collecting the surface artefacts and carrying out material culture analyses on the artefact assemblage;
- digging a series of test pits across the site to establish whether or not any cultural material was present in subsurface deposits; and,
- excavating a number of trenches. Their locations selected on the basis of surface artefact concentrations and areas with cultural materials in subsurface deposits, as indicated from test pits.

The forest floor was cleared of leaf litter and other plant material by raking the ground, using plastic rakes, and taking great care not to move any of the surface artefacts. This process uncovered further small artefacts and each was marked with a pink flag to prevent them being trampled or accidentally kicked. Once this task was completed, a grid system was laid out across the clearing using pegs and string line, with the exception of the southeast corner, which was covered in rocks that had rolled down from the steep slope to the east of the site. The grid covered an area of approximately 25 x 15 m made up of 54 2.5 x 2.5 m squares. The 54 squares were plotted on drafting paper, each of their four corners and a central point recorded using an automatic level. Surface artefacts were plotted, with X, Y and Z coordinates for each artefact recorded along with a brief description for each square. All artefacts were then individually bagged and labelled in the field. Soil colour, based on the Munsell soil colour charts (1975), and soil pH were recorded at the surface of each square.

Subsurface test pits

A total of 46 shovel test pits (approximately 50 x 50 cm in size) were excavated across the clearing to test for the presence/absence of cultural materials in subsurface layers (Fig. 7.2). Large trees and roots made this task difficult and, as a result, eight surface squares were not tested. The test pits revealed that the site does not contain deep stratified deposits. Only small amounts of cultural material were recovered in the test pits. These include glass fragments, metal fragments, flaked stone artefacts, carbonised nutshells, and charcoal.
Figure 7.2 Surface plan of the Boignjul open archaeological site with surface finds, location of test pits (represented by yellow squares), and excavation trenches T1–T4.

Source: Drawing by Å. Ferrier.
Excavations

The location of the excavation trenches was determined on the basis of the concentration of surface finds and/or a presence of subsurface cultural materials in the test pits. Four trenches (1–4) were excavated in arbitrary spits. All of the excavated sediments were weighed and then dry-sieved through 7 mm, 3 mm, and 1 mm mesh. Cultural items were recovered in situ, where possible. They were also collected from the sieves, bagged and labelled on site, and later sorted and analysed. The conditions under which permission to excavate was granted at Boignjul restricted the size and number of excavation trenches and wet-sieving was not permitted. Figure 7.2 shows the distribution of surface finds in the clearing and the locations of test pits and excavation trenches.

Trench 1

Trench 1 (Fig. 7.3) is a 2 x 2 m square located in the northeast corner of the clearing. Trench 1 was selected for several reasons. Firstly, it is an area relatively free from tree roots, which would allow for an expansion of the trench. Secondly, surface squares E2-3/F2-3 contained glass fragments, two metal files and metal fragments. In addition, charcoal, burnt animal bone fragments and one piece of flaked glass were recovered from one of the test pits, which suggested that the area could possibly contain subsurface archaeological deposits.

Figure 7.3 Trench 1 showing the top of spit 4 and the 1 x 1 m cell excavated in the southwest corner.
Source: Photograph by A. Ferrier.

Excavation progressed in 10 cm spits. This decision was based on the absence of stratigraphy in the test pits, and a lack of apparent benefits of excavating in smaller spit sizes. The subsurface deposits in Trench 1 consisted of one relatively uniform dark reddish-brown deposit (5YR ¾) with a pH of 5, the first 10 cm of which was slightly more organic. Cultural material included glass fragments, stone artefacts, charcoal and carbonised nutshells. No artefacts were found below spit 2, about 25 cm
below the surface. Charcoal and nutshell were found in very low numbers in spits 3 and 4 before they ceased at around 40 cm below the surface. It was decided to excavate a further 20 cm spit in a 1 x 1 m cell in the southwest corner at the start of spit 4 to rule out any further subsurface archaeological remains. A difference in soil structure was noted at 30 cm below the surface where, although free from tree roots, it became markedly consolidated and difficult to excavate with a trowel. No further cultural material was recovered and further excavations were considered unnecessary. Time constraints did not allow for an extension of Trench 1 and, with very low amounts of cultural material in subsurface deposits, it was decided to open a number of smaller trenches in other parts of the clearing. Figure 7.5 shows the stratigraphic sections in Trench 1.

![Trench 2 showing the base of spit 4 at a depth of 25 cm.](image)

Figure 7.4 Trench 2 showing the base of spit 4 at a depth of 25 cm.

Source: Photograph by Á. Ferrier.

Trench 2

Trench 2 (Fig. 7.4) is a 2 x 1 m square located in the northwest part of the clearing, adjacent to a large buttressed tree root. The location of Trench 2 was chosen to see if substantial amounts of water had moved across the site. There was some evidence of water moving through the clearing was evident on the forest floor in the form of small rivulets in the leaf litter. It was hypothesised that if the dry creek, in which the archaeological site is located, occasionally floods during the wet season, cultural materials might concentrate against large buttress roots.
Excavation procedures were the same as for Trench 1, however, 5 cm spits were employed due to the presence of numerous large roots, which inhibited excavation. Charcoal, nutshell fragments, and metal fragments were recovered in spits 1 and 2. Spit 3, approximately 15 cm below the surface, contained only charcoal and two nutshell fragments. All cultural material ceased near the base of spit 4 and excavation was stopped. The overall impression of the deposit in Trench 2 is that it is very similar to Trench 1 with the exception of greater root disturbance, as was expected. No evidence of fluvial sorting was found. The subsurface soil containing cultural material is unconsolidated and approximately 20 cm deep, slightly shallower than in Trench 1. Below this layer there is a somewhat
more consolidated layer that contains no cultural material. The deposit can be described as a dark reddish-brown (5YR ¾) volcanic rainforest soil with a pH of 5–5.5. Figure 7.6 shows the stratigraphic sections in Trench 2.

Trench 3

Trench 3 (Fig. 7.7) is a 2 x 1 m square located in the northern section of the clearing. The location for Trench 3 was chosen because the area is relatively clear of surface tree roots and is at the northern boundary of the clearing. In addition, charcoal, metal fragments and glass fragments were recovered in nearby test pits 9–10, and 15–16 (Grid reference C2-3/D2-3; Figure 7.2).

![Figure 7.7 Trench 3 showing the base of spit 2 at a depth of 20 cm.](source: Photograph by Å. Ferrier.)

Trench 3 was initially excavated in 5 cm spits but because very little cultural material was recovered in spits 1 and 2, spit 3 was excavated in as a 10 cm spit. A change in soil character was encountered towards the base of spit 3 at a depth of 20 cm, where the soil became consolidated and roots were no longer present. The soil was dark red brown in colour (5YR ¾) with an average pH of 5–5.5. Metal fragments, charcoal, glass, ochre, and a penny dated to 1933 were recovered in the top 10 cm of deposit. Figure 7.8 shows the stratigraphic sections in Trench 3.
Trenches 4 and 5

Trenches 4 and 5 are considered a single unit because Trench 5 was intended to be an extension of Trench 4. Time constraints led to Trench 5 being abandoned after the completion of a single 5 cm spit. No cultural material was encountered in Trench 5.
Trench 4 (Fig. 7.9) is a 2 x 1 m square located, approximately, in the centre of the clearing. The location of Trench 4 was chosen partly because of the lack of trees and surface roots, and because it is closer (than Trenches 1 to 3) to the permanent spring and small creek at the southern end of the clearing. Trench 4 was initially excavated in 5 cm spits. The top two spits were similar to those from previous trenches; an unconsolidated layer of dark red brown rainforest soil (5YR ¾) with a pH of 5, and some evidence for root intrusions. Glass fragments and two coins, a 1904 penny and a 1916 shilling, were recovered in spit 1 (5–10 cm below the surface). Below this layer, the soil became slightly more consolidated. Charcoal was present throughout and two flaked stone artefacts made from rhyolite were recovered from spit 2 (10–15 cm below the surface). Large worms, worm holes, and root channels, approximately 8 mm in diameter, were encountered throughout the deposit. Excavation was stopped at a depth of 30 cm. For unknown reasons, the consolidated layer encountered in Trenches 1 to 3 at an approximate depth of 20 cm was not encountered in Trench 4, and overall it had a less varied stratigraphy than the other Trenches. The stratigraphic sections in Trench 4 are shown in Figure 7.10.

The area between Trench 4 and the creek has many roots on the surface as well as various sized rocks that have rolled down the steep hill. No surface artefacts are present and no excavation took place in this area. The land surface slopes towards the creek and the clearing narrows to 10 m across at its southern boundary. A large tree (Sloanea australis) grows in the southwest section of the clearing and effectively ruled out any excavation of the southern section of the clearing. However, in the initial survey of the area surrounding the clearing, a small hammer-stone (on a non-local cobble) was found on the creek bank, which suggests that human activities may have taken place by the creek. A small creek adjacent to the site would have sufficed for leaching toxic nuts.

Summary of the archaeological investigations

After the initial surface survey and the collecting and bagging of all surface artefacts, 46 test pits were excavated to assess the presence/absence of cultural materials in subsurface deposits across the entire clearing. Stone artefacts, carbonised nutshell fragments, glass and metal fragments, and charcoal
were recovered from the test pits. A total area of 12 square metres was subsequently excavated, or approximately 4% of the total grid surface. Permission to excavate a slightly larger area was granted but time constraints, heat and tree roots affected progress.

The 46 test pits indicated that low amounts of cultural material are present in subsurface deposits in some areas of the clearing. This was confirmed in the excavations of four trenches located in potential hotspots: Trenches 1 to 4. Trenches 1 to 3 are characterised by an unconsolidated 20–30 cm deep deposit that contained low numbers of stone artefacts, carbonised nutshell fragments, charcoal and European materials. This is underlain by a consolidated deposit, which is free of roots but does contain very small amounts of fragmented charcoal and carbonised nutshells. The consolidated deposit continued to an approximate depth of 40 cm in Trench 1. Trench 4 appeared more organic in its composition and was less consolidated than Trenches 1 to 3. The excavation of four trenches verified the test pit observations, but showed that the subsurface deposits can be broadly divided into two Analytical Units based on soil structure. No European materials or stone artefacts were recovered from Analytical Unit 2.

Material culture analyses

The artefact analyses were designed to make an inventory of the assemblage of surface and excavated artefacts, to investigate the chronology and character of human activities at the site, and to explore human behaviours gleaned from the artefact assemblage to assist in the construction of an occupation history at the Boignjul open site. The material culture analyses were framed around a number of questions:

- what is the size and character of the assemblage;
- what types of Aboriginal and/or European activities may be inferred from the material culture evidence;
- what spatial information, including information about taphonomic processes, may be derived from the archaeological record; and,
- does the material culture evidence support the historical records and verify accounts of Aboriginal activity at the site?

Artefact types per material category

All surface and excavated artefacts were grouped into five general categories based on the type of material. These categories are stone, glass, leather, metal, and other, and they provide an overall impression of the artefact assemblage and types present at the site. Table 7.1 shows a summary of artefact types represented in the five raw material categories.

Table 7.1 Artefact types per raw material category represented at Boignjul.

<table>
<thead>
<tr>
<th>Material</th>
<th>Artefact types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone</td>
<td>Hammer-stone, grinding stone, axe, flake, core, other stone.</td>
</tr>
<tr>
<td>Glass</td>
<td>Complete bottle, broken bottle (base, finish or body or part thereof) unidentified glass fragment, modified glass fragment (with usewear/retouch or flake scars), other glass.</td>
</tr>
<tr>
<td>Leather</td>
<td>Part of boot (sole, upper or part thereof), unidentified leather fragment.</td>
</tr>
<tr>
<td>Metal</td>
<td>File, nail, matchbox lid, handle, fork, coin, unidentified fragment.</td>
</tr>
<tr>
<td>Other</td>
<td>Vulcanite button, bone button, carbonised nutshell, charcoal.</td>
</tr>
</tbody>
</table>

Source: Author's data.
Stone artefacts

The presence of stone artefacts at Boignjul unequivocally demonstrates that Aboriginal people visited the site and that some stone-working activities took place there. Stone artefacts collected from within the surface grid are listed in Table 7.2. Raw materials represented correspond with raw materials identified in the Urumbal Pocket lithics assemblage, and with the nearest identified quartz and rhyolite sources (approximately 20 km away). Stone artefacts recovered from the test pits are summarised in Table 7.3.

Table 7.2 Stone artefact types, raw material, and the surface square from which each artefact was collected at Boignjul.

<table>
<thead>
<tr>
<th>Surface square</th>
<th>Artefact type</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td>Axe blank</td>
<td>Basalt</td>
</tr>
<tr>
<td>A10</td>
<td>Core fragment</td>
<td>Quartz</td>
</tr>
<tr>
<td>E8</td>
<td>Hammer-stone</td>
<td>Indeterminate (volcanic raw material)</td>
</tr>
<tr>
<td>D7</td>
<td>Notch?</td>
<td>Rhyolite</td>
</tr>
</tbody>
</table>

Source: Author’s data.

Table 7.3 Stone artefacts recovered from test pits at Boignjul.

<table>
<thead>
<tr>
<th>Test pit</th>
<th>Surface square</th>
<th>Depth (cm)</th>
<th>Artefact type</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>F2</td>
<td>10–20</td>
<td>Angular fragment</td>
<td>Rhyolite</td>
</tr>
<tr>
<td>17</td>
<td>F4</td>
<td>0–10</td>
<td>Complete flake</td>
<td>Rhyolite</td>
</tr>
<tr>
<td>20</td>
<td>D4</td>
<td>10–20</td>
<td>Complete tool</td>
<td>Rhyolite</td>
</tr>
<tr>
<td>21</td>
<td>C4</td>
<td>20–30</td>
<td>Complete flake</td>
<td>Rhyolite</td>
</tr>
<tr>
<td>27</td>
<td>C5</td>
<td>10–20</td>
<td>Complete flake</td>
<td>Quartz</td>
</tr>
</tbody>
</table>

Source: Author’s data.

A small number of artefacts made of quartz (n=6) and rhyolite (n=1) were also recovered from Analytical Unit 1 across the four excavation trenches. At Boignjul, rhyolite and quartz artefacts are found in association with low numbers of glass artefacts on the surface and in subsurface deposits. This may indicate a continued use of lithics in the contact period. However, the overall impression of the first 30 cm of excavated deposit, and the artefacts contained therein, is that it represents a conflation of brief occupation periods including subsurface stone and glass artefact types consistent with types represented in the surface collection.

Basalt axe

A small edge-ground basalt axe, located just outside the surface grid is of interest. Basalt sources can be found near Ravenshoe and cobbles of the type found at Boignjul are available in abundance in the Millstream River (personal observation). Both places are about 15 km from Boignjul. The axe was sent to usewear and residue analyst Dr Richard Fullagar to identify any residues present and infer a history of use. The results of the analysis show that the axe has numerous fine, irregularly shaped and incised grooves around the butt, some of which are wavy rather than straight (Fig. 7.11).
There are approximately 10 grooves present around the butt and some of them overlap. Each groove is around one millimetre in width and the incisions less than one millimetre in depth. Similar grooves are also visible close to the blade of the axe. Usewear analysis suggests that these were probably deliberately incised into the rock to facilitate secure hafting (Fullagar 2007). The grooves look like they were made with a single-point metal implement like a nail, and it was suggested that a fine wire or a wire brush may have been used to create them (Fullagar 2007). The residue analysis shows that globules of a shiny reddish-brown to black residue are very similar to smears on the edges of experimentally constructed stone axes used to cut small trees. As a result, the residue has been interpreted as a resin or other plant exudate mixed with sediment. Several small scars on the axe blade’s working edge, which is also quite rounded, indicate that the axe had been used (Fullagar 2007). Usewear and residue analysis on the axe thus demonstrates that at some point in time the axe was a utilitarian object, probably used for tree cutting. It appears that a metal implement was used to improve the hafting of the axe, which in turn suggests that Aboriginal people incorporated European materials in the use and manufacture of some stone implements in the contact period. Perhaps the grooves were created in the process of rehafting a weathered pre-European stone axe with the intention of selling it to European ‘artefact collectors’ rather than for actual use.

The glass assemblage

Criteria signifying the intentional flaking of bottle glass have been a matter of debate for decades (see, for example, Allen 1969, 2008; Allen and Jones 1980; Williamson 2002). The debate surrounding glass artefacts is mostly about how to distinguish between artefacts made from glass by people and non-artefacts made of glass that exhibit attributes that could be interpreted as intentional flaking. Glass non-artefacts can result from a number of natural processes which create apparent usewear that can easily be mistaken for signs of human agency. Allen and Jones (1980:230–231) have stressed the importance of context in distinguishing between artefacts and non-artefacts on glass. For example, the presence/absence of roads, and large-scale clearing and ploughing should be included as potential agencies of fortuitous glass artefact production (Hewitt 2004:3). In addition, it has been suggested that traditional flaking techniques employed on stone were not necessary for production of useable glass implements and that usewear and residue analysis may be useful in establishing whether a glass fragment has been used or not (Carver 2005; Wolski 2000). Oral testimonies show that glass fragments were used in various scraping and cutting activities in the study area in the contact period:
The women [1930s] used a piece of glass to slice nuts, and to cut up roots and other plants, it was used for many things because it was sharp, a bit like a knife. The men sharpened their spears with glass, getting ready for the big fight (M. Barlow, pers. comm., 2004).

And:

When we were kids [1930s], my friends and I used to go to the farm dumps and get bottles for the old Aboriginal men and bring it to them in the camp [Millstream Reserve]. They would break them and use the sharp edge as a scraper and a knife. There were always a lot of broken bottles around their camp (R. Lockyer, pers. comm., 2004).

Complete bottles

Ten complete bottles and one complete jar were collected from the site’s surface. Eight came from the northern part of the site. The types of bottles that are represented at the site are shown in Table 7.4. The complete bottles and jar were all machine made. Six of the bottles have a narrow-mouth external-screw finish. This is a type of finish that was patented in 1907 but does not appear in Australian advertisements until after ca. 1920 (Boow 1991:81) and was in widespread use throughout Australia by the 1930s (P. Davies, pers. comm., 2008). In addition, a brown bottle has an embossed date indicating it was made in 1942. The manufacturing dates of the complete bottles therefore range from circa 1920 to 1942.

<table>
<thead>
<tr>
<th>Bottle type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer/wine</td>
<td>5</td>
</tr>
<tr>
<td>Essence of coffee and chicory</td>
<td>1</td>
</tr>
<tr>
<td>Jar</td>
<td>1</td>
</tr>
<tr>
<td>Medicine bottle</td>
<td>1</td>
</tr>
<tr>
<td>Milk bottle</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 7.4 Complete bottle types from the Boignjul surface collection.

Source: Author’s data.

The function of some of the complete bottles, i.e. essence of coffee and chicory, medicine and sauce, indicate that some of the bottles brought to the site were probably not used as containers to carry water or other liquids.

When I grow up in the 1940s, most farms had their own dumps and fences and properties didn’t really mean anything to the Aborigines in those days. For the most part the settlers were quite unconcerned about seeing a group of Aborigines going through the bottom paddocks or the rubbish dumps (R. Lockyer, pers. comm., 2004).

The presence of complete bottles has been interpreted as evidence of Aboriginal people visiting the clearing, bringing whole bottles to the site, which were probably picked up at rubbish dumps, pubs, etc., as described by Reg Lockyer.
Glass artefacts

The surface glass assemblage is made up of 178 artefacts. Pieces of brown and clear glass make up most of the surface artefacts collected at the site, the majority of which are brown (n=137). Most of the glass artefacts were located in the northern and central parts of the clearing (Fig. 7.2). A summary of the types and numbers of brown and clear glass artefacts in the surface collection is shown in Table 7.5.

Table 7.5 Types and frequency of brown and clear glass artefacts in the surface collection from Boignjul.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Complete bottle</th>
<th>Jar</th>
<th>Base</th>
<th>Base and body</th>
<th>Finish</th>
<th>Fragment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>6</td>
<td>-</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>107</td>
<td>137</td>
</tr>
<tr>
<td>Clear</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>13</td>
<td>140</td>
<td>178</td>
</tr>
</tbody>
</table>

Source: Author’s data.

A small number of glass artefacts were also recovered from the test pits and excavation trenches (Table 7.6). As previously mentioned, both the surface and subsurface glass artefacts were found in association with stone artefacts. This strongly suggests that the top 30 cm of excavated deposit and the artefacts contained therein represents a conflation of brief occupation periods.
Table 7.6 Glass fragments recovered from test pits at Boignjul.

<table>
<thead>
<tr>
<th>Test pit</th>
<th>Surface square</th>
<th>Depth (cm)</th>
<th>Artefact type</th>
<th>Glass colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>C2</td>
<td>10–20</td>
<td>Bottle finish</td>
<td>Clear</td>
</tr>
<tr>
<td>13</td>
<td>F3</td>
<td>0–10</td>
<td>Angular fragment</td>
<td>Brown</td>
</tr>
<tr>
<td>14</td>
<td>E3</td>
<td>0–10</td>
<td>Flaked fragment</td>
<td>Brown</td>
</tr>
<tr>
<td>19</td>
<td>E3</td>
<td>0–10</td>
<td>Angular fragment</td>
<td>Brown</td>
</tr>
<tr>
<td>27</td>
<td>C5</td>
<td>0–10</td>
<td>Flaked fragment</td>
<td>Brown</td>
</tr>
<tr>
<td>27</td>
<td>C5</td>
<td>10–20</td>
<td>Window/lantern fragment</td>
<td>Clear</td>
</tr>
<tr>
<td>30</td>
<td>F5</td>
<td>0–10</td>
<td>Angular fragment</td>
<td>Brown</td>
</tr>
</tbody>
</table>

Source: Author’s data.

The morphology of each glass fragment was described and each fragment was examined under magnification (7–40 X) to see if any type of edge modification such as usewear or deliberate retouch was present. The types of glass artefacts represented in the surface assemblage are summarised in Table 7.7.

Table 7.7 Types of artefacts on brown and clear glass fragments collected from the surface at Boignjul.

<table>
<thead>
<tr>
<th>Artefact type</th>
<th>Clear glass</th>
<th>Brown glass</th>
<th>Number of artefacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment with usewear</td>
<td>18</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>Flaked bottle base</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Complete flake</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Bipolar core</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Core</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Notch</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total glass artefacts</td>
<td>21</td>
<td>31</td>
<td>52</td>
</tr>
</tbody>
</table>

Source: Author’s data.

Thirty-seven of the glass fragments have what appears to be a continuous series of micro-sized flake scars (Fig. 7.13) similar in appearance to inferred ‘scraping implements’ made from quartz that were excavated from Urumbal Pocket.

Figure 7.13 Glass fragment (B6/133) from Boignjul with micro-sized flake scars along one or more edges (scale=1 cm).
Source: Photograph by P. Saad.

Figure 7.14 Glass fragment (C5/70) from Boignjul with apparent retouch modification of one edge (scale=1 cm).
Source: Photograph by P. Saad.

Six of the clear glass fragments appear to have been deliberately retouched along one edge (Fig. 7.14).
Glass fragments with inferred edge modifications (i.e. usewear and/or retouch) are between 3 and 4 mm thick. They have an average maximum dimension of 63 mm but range in size from 48 mm to 78 mm. Glass fragments with the type of modification illustrated in Figures 7.13 and 7.14 are relatively flat and probably originate from the body of complete bottles and/or jars. As post-depositional disturbances have been ruled out as ‘creators’ of glass artefacts at the site, the glass fragments are interpreted as most likely being the result of human activity.

Flaked glass

Thirteen of the artefacts in the surface glass assemblage from Boignjul exhibit modifications, suggesting that reduction technologies used on stone at Urumbal Pocket were applied to glass in the contact period. Seven bottle bases have been flaked: six of brown glass and one of clear glass (Fig. 7.15). Flaked bottle bases have been reported previously from contact sites across Australia (e.g. Allen 1969, 2008; Gibbs and Harrison 2008; Hewitt 2004; Williamson 2002). At Boignjul, bottle bases outnumber body and rim fragments, perhaps suggesting preferential transport of bottle bases to the site for reduction. This pattern has been documented elsewhere in Australia (e.g. Allen and Jones 1980; Paterson 2008:98–99). The fact that seven bottle bases exhibit evidence for flaking further supports this suggestion.

Four complete brown glass flakes (non-bipolar) were identified in the surface glass assemblage. These could not be refitted to the flaked bottle bases. One bipolar core of clear glass (Fig. 7.16) was collected from surface square B1, contrasting strongly with the number of bipolar cores in the stone artefact assemblage from Urumbal Pocket. Two glass fragments were classified as possibly being notched tools (Fig. 7.17). Whether or not they were deliberately retouched into notches is unknown.
Assuming an Aboriginal manufacturing origin, the analyses of the surface glass assemblage suggest that traditional flaking technologies on stone continued in limited use in the contact period. Only around 7% of the glass artefacts collected from the surface at Boignjul show evidence of the kind of reduction technologies applied to quartz and other lithic raw materials at Urumbal Pocket. The tradition of using bipolar technology on quartz and other raw materials became more or less redundant on glass at Boignjul. Thus, it appears that flaking techniques, found in some instances to be unnecessary on quartz in the Urumbal Pocket stone artefact analysis were similarly unnecessary on glass for the production of useable implements.

Leather boots

One complete boot and nine boot fragments were collected from the surface in the southwestern part of the site (Fig. 7.2). Stylistic analyses were carried out by Maya Barker (née Veres), a specialist in the history of footwear. The rounded toes date the footwear to the late 1800s and perhaps into the early 1900s, and suggest that they are the remains of men’s lace-up boots (Veres 2010:80, 95). Traces of a reddish-brown colouration remain on the side of one fragment and small holes in the leather are the remains of decorative stitching (Fig. 7.18 left). The boot remains have a machine-stitched upper, a standard practice by the 1880s when Singer sewing machines were common (Veres 2010:107). All of the footwear remains have evidence of repairs being made to their soles, which suggests that they were discarded at the site some time considerably later than their date of manufacture. In this case, the upper has been reattached to the sole with nails not normally used to repair boots and shoes (Fig. 7.18, right). The type of nails used to repair the soles, which are probably packing case nails or hobnails common to the latter half of the nineteenth century, suggests that they were not repaired by a shoemaker (Veres 2010:103). The nails used suggest that the boots were worn by people who repaired the boots themselves and discarded them at the site when they were thought to be beyond further repair. Similar observations on the curation of footwear have been described for a 1930s depression-era camp located near Toowoomba (Barker and Lamb 2009).

Figure 7.18 Footwear collected from the surface at Boignjul (scale=1 cm) (221). Left: remains of boot showing nails used to repair boot and decorative stitching in the leather. Right: close-up of nails used to repair boot.
Source: Photographs by P. Saad.

Metal artefacts

The total weight in grams of metal recovered from both test pits and excavations is shown in Table 7.8. The results show that metal recovered from Trench 2 (347.5 g) weighs more than Trenches 1, 3 and 4 and the test pits combined (2,321 g). This result is skewed because of the weight of one large metal
item (203.3 g) in Trench 2. The item is much corroded but was probably part of some kind of metal container. If the weight of the large metal item is removed from the total weight in Trench 2, the result is that most of the metal recovered in the excavations comes from Trenches 2 and 3.

Table 7.8 The total weight in grams of metal recovered from test pits and excavations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Test pits</th>
<th>Trench 1</th>
<th>Trench 2</th>
<th>Trench 3</th>
<th>Trench 4</th>
<th>Total weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>58.2</td>
<td>26.6</td>
<td>347.5</td>
<td>120.9</td>
<td>26.4</td>
<td>579.6</td>
</tr>
</tbody>
</table>

Source: Author’s data.

Metal files

Two metal files, one fork, and seven unidentified metal fragments were collected from the surface at Boignjul. The files, collected from squares E2 and F2, are both in a corroded condition (Fig. 7.19). Flat metal files of the type collected from the site were commonly used by timber cutters to sharpen their saws before chainsaws came into use in the 1950s (R. Lockyer, pers. comm., 2004). Metal files at the site may therefore be the result of timber cutters visiting the site after logging began in the 1940s. However, European items were also relatively easy for Aboriginal people to procure. Numerous historical accounts describe how miners’ camps were robbed by Aboriginal rainforest people and that raids were carried out on early settlers’ homes, particularly during the early period of Aboriginal–European contact. Chapter 3 presented some of the historical accounts that document Europeans encountering deserted Aboriginal rainforest camps in which European items such as metal files and axes were present (Loos 1982). The corroded condition of both files prevents a usewear or residue analysis from being carried out, however they could have been used for sharpening the points of wooden spears and in other woodwork activities. For example, one metal file belonging to a private collector had been modified into a spear point and hafted to a wooden spear (personal observation). Thus, it is quite possible that the two metal files were brought to the site by Aboriginal people.

![Figure 7.19 Metal files from Boignjul (scale=1 cm) (F2/20, E2/15).](source)

Source: Photograph by P. Saad.

![Figure 7.20 Metal handle recovered from test pit 31 at Boignjul (scale=1 cm).](source)

Source: Photograph by P. Saad.

Metal handle

Many of the unidentified metal fragments are flat pieces, probably originating from a range of metal containers. A metal handle (Fig. 7.20) recovered from test pit 31 (surface square F6) may have come from a number of containers such as billycans or kerosene tins, both used by Aboriginal people for a range of purposes in the contact period.

Maisie Barlow recalls how metal containers and other metal items were used by *jirrbal* women in the 1920s and 1930s to boil water and to carry food:
When we set off from town [Ravenshoe] to go to Jambilan and down to Tully, the parents carried their tools in dilly bags and kerosene tins and other metal tins. When we stopped and camped at Jambilan the ladies would boil water by putting the kerosene tins on fires, to cook all the nuts they had collected on the way there (M. Barlow, pers. comm., 2004).

Nails

Thirty-four complete nails were recovered from test pits and trenches (Fig. 7.21). Small packing case nails suggest that wooden boxes were brought to the site, perhaps used to carry food and other items, and subsequently used as firewood. Some larger types of nails are bent, which possibly suggests that they have been pulled out of timber. Packing case nails were also recycled and used, for example, in repairs to the boots found at the site. Many of the nails are, however, corroded and thus difficult to identify.

Bone artefacts

Bone button

One button was collected from surface square B1 (Fig. 7.22). It is a sew-through button made of bone, utilitarian in design and probably part of a jacket or vest of the kind from the type of clothes illustrated in Figure 7.23. This clothing was commonly in use at the turn of the century and into the twentieth century by Aboriginal people and Europeans alike. Historical documents and oral traditions show that *jirrbal* people were employed on cattle stations located on the fringe of the rainforest from the late 1800s (Loos 1982; M. Barlow, pers. comm., 2004) and in 1913, Eric Mjöberg commented on the excellent tree climbing skills of Aboriginal men and boys who were working for the timber cutters. By 1920, *jirrbal* people were working in and around Ravenshoe in a variety of paid employment (M. Barlow, pers. comm., 2004).

Buttons recovered from historical sites in Australia generally show that bone buttons had been replaced by metal, plastic, shell and glass buttons by the mid-nineteenth century (Cameron 1991). One possibility is that the bone button came from hand-me-down work clothes, perhaps given to Aboriginal people as payment for labour.
Cow femur

In terms of potential Aboriginal use of this rainforest area in the early contact period, a complete cow femur with cut marks made from an iron implement is an interesting item. Police records from the late 1880s show that the owners of Wooroora Station on Blunder Creek (near the Tully River) were encouraged to supply the local Jirrbal people with rations to prevent hostility between the parties (discussed in Chapter 3). From May until November 1889, 33 head of cattle were killed for this purpose; the owners were paid £8 per month by the government in return (Loos 1982:111). While there is no way of knowing whether the cow femur found at Boignjul is the remains of one of these cattle, the background to the 1889 food ration resolution is significant in terms of understanding Aboriginal rainforest occupation.

Other faunal remains

Five burnt long-bone fragments were recovered from two test pits in surface square E3 (Table 7.9). They have been identified as the remains of a small to medium-sized animal in the size range of a possum (J. Garvey, pers. comm., 2007).

Table 7.9 Burnt animal bones recovered from test pits in surface square E3 at Boignjul.

<table>
<thead>
<tr>
<th>Test pit</th>
<th>Surface square</th>
<th>Depth(cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>E3</td>
<td>0–10</td>
<td>Two small burnt bone fragments, probably medium-sized animal</td>
</tr>
<tr>
<td>19</td>
<td>E3</td>
<td>10–20</td>
<td>Two small burnt bone fragments, probably medium-sized animal</td>
</tr>
<tr>
<td>14</td>
<td>E3</td>
<td>0–10</td>
<td>Burnt bone fragment, long-bone from medium-sized animal</td>
</tr>
</tbody>
</table>

Source: Author’s data.
Carbonised nutshell fragments and charcoal

The Urumbal Pocket plant analysis demonstrated that carbonised nutshells survive in archaeological sites in the rainforest region. Except for a total absence in the top 10 cm, carbonised nutshells were also present at Boignjul in low numbers throughout the deposit (Table 7.10).

<table>
<thead>
<tr>
<th>Material</th>
<th>Test pits</th>
<th>Trench 1</th>
<th>Trench 2</th>
<th>Trench 3</th>
<th>Trench 4</th>
<th>Total weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutshell</td>
<td>0.7</td>
<td>15.3</td>
<td>0.94</td>
<td>2.86</td>
<td>9.77</td>
<td>29.57</td>
</tr>
<tr>
<td>Charcoal</td>
<td>57.0</td>
<td>187.2</td>
<td>26.5</td>
<td>59.5</td>
<td>147.0</td>
<td>477.2</td>
</tr>
</tbody>
</table>

Source: Author’s data.

The absence of carbonised nutshells in the upper 10 cm of deposit may signal an end to the traditional way of processing toxic nuts in ground ovens. The availability of metal containers in the contact period resulted in toxic nuts being boiled in kerosene tins instead of the traditional method of steaming them in a ground oven (M. Barlow, pers. comm., 2005). It is not known what happens to discarded boiled nutshells but they are most likely less preservable than carbonised nutshells, particularly when they come into contact with acidic rainforest soils. Alternatively, the processing of toxic nuts at the site stopped sometime in the contact period and other food items were consumed.

Charcoal from Analytical Unit 1 is mostly fragmental but some larger pieces were also recovered. Excavations in Trench 1 also revealed that carbonised nutshells and charcoal fragments were present in Analytical Unit 2, but no stone or European artefacts were found. The carbonised nutshell assemblage consisted mostly of unidentified flat or slightly concave fragments less than 10 mm in maximum dimension. Four fragments could be identified and belong to the Lauraceae family (yellow or black walnut). Radiocarbon dates on two charred walnut fragments from Analytical Unit 2, i.e. in deposits 30 cm below the surface, suggest that Aboriginal people visited the site occasionally over the last 400 years (437±32 BP = CalBP Wk-18589).

Other material culture items

Vulcanite button

Vulcanite is a hard rubber commonly used to make buttons which was first patented in 1851 (Miller et al. 2000:16), although not commonly used until much later. A button made of vulcanite (Fig. 7.24) was recovered from the 10–20 cm layer in test pit 4, probably originating from a coat (S. Hayes, pers. comm., 2007) perhaps similar to the type worn by Jirrbal people in Figure 7.23.

Coins

Two coins were recovered from the 10–20 cm layer in Trench 4 and one from the 0–10 cm layer in Trench 3. Table 7.12 shows their dates and text and they are illustrated in Figure 7.25. The depth at which the two coins in Trench 4 were recovered (120 cm) demonstrates how small surface items like coins became rapidly buried and incorporated into subsurface deposits at the site.
Figure 7.24 Vulcanite button recovered from test pit 4 at Boignjul.
Source: Photograph by P. Saad.

Figure 7.25 Coins recovered from the excavations at Boignjul (scale=1 cm) (T3/52, T4/68, T4/67).
Source: Photograph by P. Saad.

Table 7.11 Date and text on coins recovered from the excavations at Boignjul.

<table>
<thead>
<tr>
<th>Trench</th>
<th>Depth (cm)</th>
<th>Description</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0-10</td>
<td>1933 Penny</td>
<td>Commonwealth of Australia</td>
</tr>
<tr>
<td>4</td>
<td>10-20</td>
<td>1904 Penny</td>
<td>Commonwealth of Australia</td>
</tr>
<tr>
<td>4</td>
<td>10-20</td>
<td>1916 Shilling</td>
<td>'Georgivs V Dig. Br...in Rex F.D. IND IMP'</td>
</tr>
</tbody>
</table>

Source: Author’s data.

Interpreting Boignjul’s function through time

Maisie Barlow visited Boignjul during the 2004 excavations. Whilst she clearly remembers visiting Jambilan and other sites in the area as a young girl, she never previously visited Boignjul. She explained the possible reasons behind this:

Many small family groups would travel separately through the rainforests. They would gather what was needed for a short stay on their way around a series of fixed campsites in the rainforest. Another family could have used this particular location in their travels down to the coast and back again. There were also men’s ceremonial sites at secret locations in the rainforest, where the men took the boys to be initiated and teach them about men’s business. The women and girls were not allowed to go to them, just like the men were not allowed at Gumbulumba, which was a place for Jirrbal women only (M. Barlow, pers. comm., 2004).

Aboriginal ceremonial grounds inside rainforests were observed in the early contact period and support Maisie’s second interpretation of the site. Whether Boignjul functioned as a stop along many of the walking tracks known in the area that Aboriginal people followed in the past, or was a ceremonial site, cannot be deduced from the archaeological record. Radiocarbon dating of carbonised nutshellsh (Lauraceae) from a soil layer 30 cm below the surface demonstrates that the site was probably occasionally visited by Aboriginal people before European contact. In addition to the small amount of carbonised nutshellsh, fragments of charcoal were consistently found in the lower layers, perhaps the result of small burn-offs which would have kept the clearing free of the surrounding rainforest vegetation. In fact, charcoal was recovered from every test pit. If the excavated material in Analytical Unit 2 is considered a representative sample of subsurface deposits at the site, Aboriginal pre-contact site visits were of a short-lived nature. The overall impression of the top 30 cm of unconsolidated deposit, i.e. Analytical Unit 1, is that it represents a conflation of brief episodes of occupation in the contact period. Whether or not the flaked stone artefacts found at the site are from the early contact period is not known. It is possible that Boignjul and the surrounding rainforest acted as a refuge for Aboriginal people in the early period of conflict and resistance.
The archaeological evidence from Boignjul supports Arthur Baillie’s account of Aboriginal occupation at the site in the 1930s. Baillie observed traditional-style mijas built out of lawyer cane and recounted how the Jirrbal people still used traditional items such as lawyer cane baskets and hunted native fauna, such as possums. He recalled how Jirrbal people residing and working on farms in Ravenshoe during most of the year would leave town camps on some weekends and at Christmas time and take journeys into the rainforest. This observation is supported by Jirrbal oral tradition. Furthermore, he recalled Aboriginal people stripping off their clothes, leaving them hanging in trees and bushes around rainforest camps, providing a fanciful but possible explanation for how two buttons and three coins came to enter the archaeological record at Boignjul. The combined evidence points to continuities in some aspects of traditional Aboriginal culture and rainforest occupation in the contact and post-contact periods. At the same time it was a culture in transformation, adapting to changes brought about by European settlement. The archaeological record at Boignjul suggests that the site was abandoned sometime in the 1940s.
This text is taken from *Journeys into the Rainforest: Archaeology of Culture Change and Continuity on the Evelyn Tableland, North Queensland*, by Åsa Ferrier, published 2015 by ANU Press, The Australian National University, Canberra, Australia.