8. Singing the syllables: translating spelling into music in Tibetan spelling chant

Phil Rose

Audio samples relating to this chapter are available online at: http://epress.anu.edu.au/titles/sounds_translation_citation.html

Ich kann das Wort so hoch unmöglich schätzen,
Ich muß es anders übersetzen

(Goethe Faust: erster Teil)

Introduction

Every literate culture has ways of saying how the written words of its main language are made up of units of writing. In English, this is called spelling. This chapter looks at spelling in Tibetan, where it is called 'sbyor klog' (pronounced a little like ‘jaw lock’). It adopts the special perspective, however, in keeping with the theme for this volume of ‘sound in translation’, of how the spelling is really chanted by a lama. This is called Tibetan spelling chant (henceforth TSC). Although ‘sound’ appears self-explanatory—the lama is, after all, creating sound when he chants—the reader will find that in TSC, sound is not a straightforward notion. First, there are two different kinds of sound involved—namely, speech sounds and musical sounds (and it is sometimes not easy to tell them apart). Second, there are many different ways at which these sounds can be looked: acoustically, for example, or historically. These differences are important for understanding TSC.

In translating from one language into another (the first sense of ‘translation’ that springs to mind), for example, one moves meaning from one place (the source of the message, be it a book, a speaker at the United Nations, or whatever) into another (the head of the listener or reader) by preserving as much of the meaning as possible while changing the linguistic form that carries it. In Euclidean geometry, translation is to move a figure or body while preserving some of its features (it must not be rotated or dilated, for example). In TSC, unlike language, it is not meaning, but structure that is being moved, from one domain—language—into another, music. The structure involved is that of the spelling. Just like other examples of translation, not all aspects of this structure
are preserved in TSC (since languages differ not in what they can say but in what they must say; in translating from one language into another, you cannot preserve all the original meaning).

In TSC, then, spelling structure is translated into music. To what purpose? In many cultures, considerable significance attaches to being able to spell: in Anglo culture, it is still considered a mark of education and is one of the myriad methods we, as social beings, use to discriminate between ourselves. TSC is culturally significant for several reasons. First, spelling is considered a necessary preliminary to fluent reading of the Buddhist scriptures and novice monks are taught to spell by chanting the spelling of individual syllables; it is felt that chanting helps to make a difficult task—learning to spell—less onerous. It is also likely that chanting aids in remembering important aspects of the spelling. The primary significance of TSC, however, is that creating verbal energy in this way is considered a virtuous act, thus benefiting chanter and listener(s).

This chapter will thus illustrate some of the many aspects of sound involved in translating the spelling structure of classical Tibetan into music. At the same time, it will demonstrate the necessity of combining classical techniques of linguistic analysis with musical and acoustic analysis to yield a proper description of the genre. Some examples will be given of the complex mapping between the linguistic structure, which encodes the orthographic structure, and the musical structure of the chant. The description is based on Rose (2001), a detailed and fairly exhaustive analysis of a recording of a corpus of 142 orthographic syllables chanted by an acknowledged practitioner, Lama Choedak Yutok, a Tibetan Buddhist lama of the Sa skya tradition.

Spelling presupposes some kind of written representation of language. The top part of Figure 8.1 shows the first few words in a passage of classical Tibetan written in Tibetan script. Like most South and South-East Asian scripts, the Tibetan script developed from an Indic precursor and was adopted to write Tibetan as spoken in the sixth to ninth centuries (Beyer 1992:41; van der Kuijp 1996:372). It is probably best known in the West as the script in which the Tibetan versions of the Buddhist canon have been transmitted (Miller 1956:1). The script runs from left to right and the real text starts after the two vertical lines. Syllables are separated by dots, so this excerpt contains 18 syllables.

The fragment of script in Figure 8.1 is really the start of the passage, the spelling of which is chanted by Lama Choedak. I have cut out the chanted spelling of some of the syllables (those shown in grey) to keep the recording to a manageable length and to include the spelling of several different types of syllables. So that the reader can follow the chant, the bottom part of Figure 8.1 contains a representation of the speech sounds of the chanted passage. The boundaries between the spelling sentences that spell the individual syllables are marked with vertical lines; the reader should be able to hear from the lama’s
pausing and breathing where these boundaries occur: this is where spelling of a particular syllable ends. The boundaries internal to the spelling sentences that mark the phrases that spell different components of the syllable are also shown.

TSC is thus an expression of orthographic form in linguistic and musical structure. The remainder of this chapter will describe and exemplify aspects of the linguistic and musical structure, and show how they combine in the chant. There are two main parts to the chapter. In the first part, which deals with linguistic structure, I explain how a written Tibetan syllable such as b*Uv is spelled. In the second part, I describe aspects of the melodic and rhythmic structure of TSC and show with the help of descriptive acoustics how the linguistic structure is expressed musically, including some of the embellishments used by the chanter. Before this, however, it is necessary to discuss some interesting problems associated with the representation of speech sounds in TSC.

Representation

In Figure 8.1, the speech sounds in chant have been represented with quasi-phonetic symbols, since the use of the proper symbols, such as [ŋ], [ɔ] or [ʒ], would only introduce unnecessary complication. The reader can, after all, really hear the speech sounds involved. It should be realised, however, that the complexities in representing the speech sounds in TSC are associated not just with the use of unfamiliar phonetic symbols, but in fact go much deeper.

One complexity arises from the important distinction drawn in linguistics between two levels of speech sound structure called *phonetic* and *phonological*. A phonetic representation shows the details of the real sounds; a phonological representation shows only those aspects of the sounds that are relevant for their organisation in a particular language. For reasons that are too complex to address here—a proper account can be found in Rose (2001:166)—neither a phonetic nor a phonological representation on its own is particularly useful for the sounds of modern Tibetan in TSC.
Another complexity in representation comes from the fact that in chant the speech sounds are sung and that, in being sung, they can lose some of their linguistic features. For example, in modern Tibetan, pitch is just as much a part of a word as its vowels and consonants: it is a tone language. Pitch is, however, also manipulated in chant and the linguistic tone of a word can be modified or lost thereby. It is then a problem whether the linguistic pitch of the chanted word should still be represented. Because of these complexities, I have indicated chanted sounds in a compromise representation. Where it is necessary, I have used oblique slashes to indicate sounds in general, thus: /li/.

Linguistic structure of TSC

In much the same way as a written English word is made up of different letters, the shape of a written Tibetan syllable is made up of different components. English letters and Tibetan components have conventional names. Spelling involves saying these names using speech sounds. For example, to spell the English word *thought* we would say:

Example 8.1

/ti əiʃ əʊ dʒi əiʃ ti spelz 0ət/ “t” “h” “o” “u” “g” “h” “t” spells “thought”. (1)

Here I have used the proper symbols to emphasise that the name of each of the components is itself an English word, made up of English speech sounds—for example, /əiʃ/ is an English word meaning ‘the name of the letter “h”’. The word ‘thought’ has been used to demonstrate that there can often be a big difference between the spelling and the real sound. There are only three sounds in *thought*—/θ ə t/—but seven letters. As will be seen, this is the case also with Tibetan, and for the same reason. How words are said in a particular language—what the speech sounds are and how they go together—is referred to as phonological structure. Phonological structure is therefore a necessary component in the description of spelling.

There is, however, more to spelling than just phonological structure, since the way the names of the letters, or components, are combined—their syntax—is also part of the convention of spelling. The syntax of English spelling is relatively straightforward. In an English spelling sentence—for example, ‘c’ ‘a’ ‘t’ spells ‘cat’—the letters are first simply named in sequence and this sequence then usually constitutes the subject noun phrase: [sɪ ət ɪ] NPsub. This is followed by a verb ‘spells’ and then the name of the word being spelt follows in its entirety as the object noun phrase: [kæt] NPobj. *Spells* and *cat* constitute a syntactic constituent called a verb phrase. This syntactic structure, which is hierarchical, is represented conventionally in linguistics with labelled brackets, thus:
It is interesting to note from the –s on the verb *spells* that the subject noun phrase, although it consists of separate noun-like units, is considered singular, thus representing semantic rather than syntactic structure (implied is: the letters ‘c’ ‘a’ ‘t’ taken together as a unit spells ‘cat’. Compare this with the use of a plural verb in the sentence ‘c’ ‘a’ ‘t’ are all letters of English).

Note that this is of course not the only possible spelling syntax. Different languages have different conventions. In ancient Chinese, for example, (simplifying a little) a possible spelling for a character pronounced *cat* would have been ‘cat cob hat cut’. What this stands for is: the Chinese character *cat* is spelt with the initial consonant of the character pronounced *cob* and the rhyme of the character *hat* (Malmquist 1994:10). (‘Cut’ stands for the Chinese name for this particular method of spelling: fānqì or reverse cutting.) We shall see a much more complicated spelling syntax for Tibetan.

Thus to describe the linguistic structure of spelling, we must refer to phonological structure and syntactic structure. The same applies to Tibetan spelling, except that its syntax is far more complicated and interesting than English.

A simple example

The best way of giving an idea of how Tibetan spelling works is to start from the simplest example and then introduce more complexity. Figure 8.2 is an example of the simplest type of syllable. It is simple because it is composed of a single orthographic unit (although written with three strokes). For obvious reasons, it is convenient to represent written Tibetan in romanised form. In the Wylie romanisation used in this chapter (Wylie 1959), ṣ is romanised *ba*. It is important to realise that the romanisation does not represent the pronunciation of the component—that is, the way its name is said. The Tibetan script was adopted to represent the sounds of Tibetan in the sixth to ninth centuries. All languages change over time and the sounds of Tibetan have changed enormously since then. Since it is the modern sounds that are used to name the components of the syllable, and how the syllable itself is pronounced, it is necessary to distinguish between the romanisation, which is a representation of the orthographic components of the syllable, and their phonological representation, which represents the real sounds used in naming the components as well as the final result. This situation is similar to English spelling: because of some very complicated changes in the pronunciation of vowels, the letter ‘e’ is said with an /i/ vowel, as in the word ‘she’, not a vowel corresponding to the way it was said when the spelling was devised.
 Sounds in Translation

$\text{Sounds in Translation}$

is one of a set of 30 symbols, called radicals, most of which are romanised with a sequence of a consonant plus an a vowel, thus: ba. To spell the radical ba on its own in TSC, it is simply spoken. (There are two instances of single, spoken, radicals in Figure 8.1, indicated by italics.) This means we have to know how the name of the component ba is pronounced in modern Tibetan and this means talking about linguistic (as opposed to musical) tone.

As already indicated, modern standard Tibetan is a tone language, which means that pitch is just as much a part of the words or syllables as their consonants and vowels. In the kind of Tibetan spoken by Lama Choedak, the tonology is very simple—there are just two tones: high and low (symbolised with acute and grave accents respectively). Ba is pronounced with a low tone, thus: /pà/ (refer to Audio 8.1a). Listen to Audio 8.1b for a sample of one with a high tone: /pá/. This high-toned example is the name for the radical pa, pa. It can be heard that high and low tones are realised with a falling pitch, but the low tone has in addition an initial level or slightly rising pitch component, which gives it an overall slightly convex pitch.

![Wave-form and Fundamental frequency graphs](image-url)

Figure 8.3 Wave-form (above) and Fundamental frequency (below) for high and low tone syllables pā /pā/ (left) and pā /pā/ (right).
Figure 8.3 shows, using the two syllables /pá/ and /pà/, the acoustics that correspond to the pitch percept of these two tones. Along the top is shown the wave form of the two syllables—the rapid fluctuations in air-pressure that is sound. It can be seen that the high tone syllable lasts for about 30-hundredths of a second and the low tone syllable is a little bit longer, at about 40 centiseconds. Below the wave form are the fundamental frequency curves for the two syllables. Fundamental frequency (F0) is the basic rate of repetition of the complex changes in air pressure. It is the primary acoustical correlation of pitch and corresponds to the rate of vibration of the speaker’s vocal cords. It can be seen that the F0 shapes correspond to the pitch shapes. The F0 of the high-tone syllable falls from an onset at about 145 hertz (Hz) to about 105Hz. The F0 of the low-tone syllable rises from an onset at about 120Hz to peak about 130Hz, and then falls to the same value as the offset of the high-tone syllable.

Note that the tonal difference between the two syllables is represented in the Wylie romanisation by a difference in the initial consonant: pa versus ba. At the time the spelling was devised, it was assumed that the main difference between the two syllables was in the initial consonant. One of the major changes that Tibetan has undergone is tonogenesis, whereby contrastive linguistic tone has developed from syllable-initial consonants, and then the original difference between the consonants has been lost. This is a change found in the history of many languages. For example, the precursor of Vietnamese, a modern tone language, was not tonal. The tone of modern Tibetan is preserved only in a few well-defined cases in TSC, but, as will be demonstrated, it is sometimes reflected iconically in the musical structure, in the choice of embellishments to notes.

Vowel symbols

The next level of complexity is when a radical is combined with a separate symbol to indicate a vowel other than a. Figure 8.4 shows the syllable bo /pò/. It can be seen that it is composed of the radical ba with an ~ symbol on top. This symbol represents the o vowel in bo and is called /nàro/ (there are three other vowel symbols, with names, representing the vowels i, u and e). The syllable bo is spelt /pà nàro pò/, which can be translated as ‘the radical ba with naro vowel spells bo’. This is an example of a vowel phrase, a syntactic constituent that consists of three parts: the name of the radical ba: /pà/; the name of the naro vowel: /nàro/; and the result of combining them: /pò/. We represent this formally as:

Example 8.3
[pà nàro pò]vowel phrase
This example starts to give a picture of how the spelling works. An input is specified: /pà/; then an operator: /nàro/; and then the resulting output: /pò/—the whole being combined in one phrase. As the vowel phrase /pà nàro pò/ also constitutes a spelling sentence on its own, a more complete syntactic representation would be:

Example 8.4
\[\{[pà nàro pò]\} \text{vowel phrase} \text{spelling sentence}\]

Postfix

One of a small selection of radical symbols, called a postfix, can be added after the radical. Figure 8.5 demonstrates this. It shows the syllable bod (which is really the word for Tibet). The ba radical, with naro on top, can be easily recognised. The final symbol, the postfix, is the radical फ da.

Although the syllable is spelt bod, it is pronounced /pö/, without a /d/ and with a vowel different from /o/: /ö/ represents a front-rounded vowel similar to the vowel in French fleur (flower) or German götter (gods) (the ‘\’, for reasons of font incompatibility, represents the low tone). The reason for the discrepancy between the spelling and the sound is historical, like the example of tonal development mentioned above. The syllable was originally pronounced something like /bod/. The consonant /d/ is made in the front part of the mouth, just behind the teeth, by the front part of the tongue. The vowel /o/ is made with the back part of the tongue in the back part of the mouth and with the lips rounded. Historically, the originally back-rounded vowel /o/ has been pulled forwards in anticipation of the front consonant /d/, but has retained its lip rounding and thus has become a front-rounded /ö/. This is another historical change called umlaut. It is probably best known from its occurrence in the history of Germanic, where its effects can still be seen today in modern German vowel alternations in words such as Fuβ ~ Füβe and their English cognates foot ~ feet. In the history of Tibetan, the final consonant d then disappeared. A low tone has also arisen from the original syllable-initial consonant b.

The syllable bod is spelt by first giving the vowel phrase to derive bo, then adding a postfix phrase to get bod, thus:

Example 8.5
\[\{[pà nàro pò]\} \text{vowel phrase} \{[pö\ tà pö]\} \text{postfix phrase} \text{spelling sentence}\]

In Example 8.5, the vowel phrase and postfix phrase are shown combined as constituents of a spelling sentence. The vowel phrase and its structure in
Example 8.5 are clear, and it can be seen that the postfix phrase, like the vowel phrase, contains three parts. The second and third parts of the postfix phrase appear analogous to the operator and the output components of the vowel phrase, but the first part, /pö/, needs explaining. Given the input-operator-output structure, we would expect the first term in the postfix to be the same as the result of the preceding vowel phrase—here /pò/. It is, however, one of the regularities of TSC that in the postfix phrase the input often anticipates the output. There is a possible reason for this, but it has to do with the performance of chanting itself and will be taken up again in the section below on musical structure.

Subjoined component

A very common component in the Tibetan syllable is found immediately under the radical. This so-called subjoined, or subfixed, component often corresponds to a y or r following the consonant spelt by the radical. In the syllables kya or tra, therefore, the y and r would be spelt by subjoined components. Figure 8.6 shows the syllable र्ग byung with a subjoined y. The radical in byung is recognisable as ग ba, and immediately underneath it is ं— the subjoined y. Below the subjoined y is — the symbol for the vowel u, called /zhèbkyu/. The postfix is ं nga, corresponding to the final ng. The subjoined portion is spelt, in a subscript phrase, with the same input-operator-output structure as the vowel and postfix phrase, thus:

Example 8.6

[pà yàda já] subscript phrase

The /da/ means joined, so /yàda/ means ‘with ya joined’, and the phrase in Example 8.6 could be translated as ‘the radical ba with ya joined to it spells /jà/’. Why is the output /jà/ and not /byà/? This is because of another historical change, called labial palatalisation, whereby syllable-initial bilabial consonants such as /p/, /b/ and /m/ changed to corresponding palatal sounds such as /ch/, /j/ and /ny/ (Ohala 1978:370–3), so the syllable written bya, and originally said /bya/, is now said /jà/. (In some parts of Tibet, where the change did not take place, the pronunciation is still /bya/.) Labial palatalisation is also the reason why the first syllable in the name for Tibetan spelling, sbyor klog, is said /jø/ like ‘jaw’, with a palatal, but is written with a by. The labial palatalisation was caused by the following /y/ sound, which was also palatal, but it was an acoustically rather than an articulatorily motivated change. It happened because the acoustics of /b/ before /y/ in a syllable such as /bya/ were similar enough to the acoustics of /j/ in /ja/ for listeners to mishear /bya/ as /ja/ and then to repeat their mistake in saying what they heard—namely, /jà/.
The whole syllable *byung* is spelt with three phrases: a subscript phrase, a vowel phrase and a postfix phrase, in that order. The process is cumulative, the output of each phrase acting as the input for the next (with the exception of the postfix phrase, which, as already explained, shows phonological anticipation), thus:

Example 8.7

```
{[pà yàda jà] subscript phrase  [jà zhèbkyu jù] vowel phrase  [jung ngà jùng] postfix phrase} spelling sentence
```

Further expansions

Figure 8.7 shows a Tibetan syllable with all seven: *bskyugs* (it means *vomited*). Its radical is ཀ ka, in addition to which a subjoined ya and a zhebkyu vowel can be recognised, making up the ལྭ kyu in *bskyugs*. To this a postfix ག ga is added, making up ལྭ kyu. The new components are: a post-postfix ག sa after the ག ga; a prefix ཐ, recognisable as *ba*, before the ལྭ kyu; and a superfix ཐ sa, on top of the ལྭ kyu complex. The syllable is pronounced /kyūʔ/ (*ʔ* is a glottal stop, as in cockney *bu’er* for *butter*, and corresponds to the postfix ག ga). Like silent letters in English, the three new components—the prefix *ba*, superfix *sa* and post-postfix *sa*—are not represented in the pronunciation. The syllable *bskyugs* ལྭ is spelt as follows (the /o/ is an obligatory part of the prefix phrase):

Example 8.8

```
```

Musical structure of TSC

One important fact about the musical structure of TSC is that much of it can be described in terms of the linguistic structure. This means that if you have to chant, say, the spelling of a vowel phrase, you know the range of possible notes on which to chant the vowel phrase components and the metrical structure in which the beats carrying them must be organised. For example, the vowel phrase of the rather complicated first syllable in the chanted passage in Figure 8.1 is /nga naro ngo/. This means adding a *naro* vowel to a *nga* radical spells /ngo/. The metrical structure assigned to such a vowel phrase in TSC would be a single measure of three crotchet-note beats (3/4), with the input / nga/, operator /naro/ and output /ngo/ components each assigned a crotchet-note value. Furthermore, the operator component /naro/ would be chanted on a double-quaver note. This is shown in the top part of Figure 8.8.
Rhythm of TSC

The acoustic basis of perceived rhythm in speech is elusive; however, the rhythm of basic beats in TSC does correlate fairly straightforwardly to acoustic duration. To demonstrate this, the bottom part of Figure 8.8 shows a so-called wide-band spectrogram of the vowel phrase /nga naro ngo/ of the first syllable. Duration, in centiseconds, is shown along the bottom and frequency, in hertz, up the right-hand side.

A spectrogram like this shows the distribution of acoustic energy in vocal output and how it changes over time. It shows especially the energy associated with supralaryngeal gestures such as vowels and consonants. The thick horizontal bands of energy, for example, are the supralaryngeal vocal tract resonances, called formants, and vowel quality is determined by the frequency of the first two or three of these formants (the band of energy just above 1kHz in the syllable /ngo/ is the second formant of its /o/ vowel).

A wide-band spectrogram has good enough time resolution to allow any acoustic boundaries between the units to be identified, so that the units’ duration can
be measured. (Quite often there are no clear-cut boundaries between speech sounds, but in this case there are.) The duration of the vowel-phrase constituents in Figure 8.8 can be measured as: 53.6 centiseconds for /nga/, 52.5 centiseconds for /naro/ and 50.5 centiseconds for /ngo/. This shows they all have very similar duration. Measurements on 39 crotchet-note beats throughout the chanted corpus (Rose 2001:178) show their mean duration to be 48.8 centiseconds (sd = 3.9 centiseconds), so the beats in Figure 8.8 are just a little longer than average. The mean beat duration of 48.8 centiseconds can be conveniently rounded off to a value of 50 centiseconds, which corresponds to a *moderato* tempo of 120 crotchet notes per minute.

Melody of TSC

In Rose (2001), five pitches were distinguished for the chant melody: B♭, C, D, Eb and F (B♭ is in the second octave below middle C; the others are in the next higher octave), with the lama appearing thus to be chanting in B♭.

![Musical notation](image)

![Fundamental frequency spectrogram](image)

Figure 8.9 Above: musical representation of chanted vowel phrase /nga naro ngo/ D.C B♭. C. Below: fundamental frequency of vowel phrase superimposed on its wide-band spectrogram.
Three of these pitches—D, C and B♭—can be heard on the /nga naro ngo/ vowel phrase, with its D, C B♭, C melody (in this linear representation, beats are separated by periods) (refer to Audio 8.2). Figure 8.9 shows the F₀ of the vowel phrase. It has been superimposed on a wide-band spectrogram to show how the changes in F₀ signalling the pitch are produced relative to the vowels and consonants of the phrase. The most important features in the F₀ time course—those corresponding to my D-C-B♭-C pitch percept—are the quasi-level portions of F₀ marked as T (target) 1 through 4. /nga/ D can be seen to have a quasi-level F₀ target at about 150Hz. After this, the F₀ falls to the second target at 133Hz on /na/ C, then falls again to the third target at about 113Hz on /ro/ B♭. Finally, the F₀ rises again to the fourth target at about 132Hz on /ngo/ C, at a level, it can be seen, only slightly lower than that of the second target on /na/ C.

The F₀ of speech or singling is never really static, because the vibration rate of the vocal cords producing it is affected by a myriad factors in addition to the pitch target the speaker is aiming at. The most important of these is that the vocal cords have to change their tension in moving from one target to another and their rate of vibration is also affected by the vowels and consonants they are said with.

As already mentioned, the primary acoustical correlation of pitch is fundamental frequency (F₀), which is the number of times per second, or hertz (Hz), the complex sound wave repeats. In Rose (2001:183–5), I investigated to what extent the pitches of the chant melody matched their expected F₀ values. In Figure 8.9, for example, it can be seen that the match is very good. The expected frequencies for B♭, C and D are 117Hz, 131Hz and 147Hz respectively (Baken 1987:487); as pointed out above, the observed values were: 113Hz (‘B♭’), 133Hz and 132Hz (‘C’) and 150Hz (‘D’).

It was found in Rose (2001) that of the five melody pitches, overall, ‘B♭’, ‘C’ and ‘F’ corresponded well to the expected frequencies. There was, however, a problem with the ‘D’ and ‘Eb’ pitches, with mean F₀ values of 150Hz and 152Hz (the expected values would be 147Hz and 157Hz)—although the mean F₀ values corresponding to the lama’s ‘Eb’ and ‘D’ pitches did not differ too much from their expected frequencies and were in fact statistically significantly different. The very small difference between them, and their bracketing by the expected F₀ values, suggests that two separate pitch targets are not involved. This means, in turn, that it is not clear whether my inference above as to key (‘B♭’) is justified. As always, too, in cases like this where only one performance by one subject is being analysed, it is not possible to determine whether the performance is a good exemplar of the genre or whether there is a tiny lack of precision in the lama’s pitch control.
In fact, the indeterminacy could be irreducible, given what is known about the relationship in professional singing between F0 and pitch targets and the way deviations from expected values are judged professionally. Sundberg et al. (1996), for example, investigated the performance of a well-known aria in commercially available recordings of 10 singers and the appraisal by professional adjudicators of the extent to which certain notes in the aria were achieved. It was found (Sundberg et al. 1996:294, 305) that the professional singers differed considerably in whether their pitch targets corresponded to expected F0 values. This means that discrepancies between pitch and F0 in this performance of chant are not necessarily indicative of inaccuracy. It was also found (Sundberg et al. 1996:295) that there was not a great deal of agreement in the professional assessors’ judgments of the accuracy of the singers’ notes, and further, that their judgments did not relate in a clear way to the singers’ accuracy as measured by their F0. This means that it might not be possible to rely, as one must do in questions of performance correctness in phonetic fieldwork, on the judgment of other practitioners as to the quality of the chant performance.

In view of this, a reasonable interpretation of the pitch targets in TSC is that the chant melody appears to be constructed from three basic pitches—HIGH, MID and LOW—with an additional SUPERHIGH pitch of restricted occurrence. LOW corresponds to Bb, MID to C, HIGH to D or Eb in apparent free variation and SUPERHIGH to F.

Embellishments

The melody of TSC is not, of course, composed solely of plain crotchet and quaver notes. The lama makes use of several embellishments, four of which—rising and falling appoggiatura and up and down triplets—are illustrated below.

Rising and falling appoggiatura

Crotchet notes are sometimes embellished with rising or falling appoggiatura. About 10 per cent of the beats have a sharp rise in pitch onto a level target (refer to Audio 8.3). It is on the first syllable of a spelling sentence for Ù de, consisting of the vowel phrase /ta trengbo tè/: ‘the radical da with drengho spells /tè/’ (/trengho/ is the name of the vowel symbol ~, transcribed e. For phonetic reasons, it often sounds like /ringbo/ in chant). It can be heard that the first syllable is chanted with a rising appoggiatura onto a HIGH pitch target (Eb).

Figure 8.10 shows the musical representation of the spelling sentence and the corresponding acoustics. It can be seen that the F0 onsets LOW, at about 120Hz, but rapidly rises to the HIGH target at about 152Hz by mid-syllable (compare
Singing the syllables: translating spelling into music in Tibetan spelling chant

with Eb F0 at 156Hz). It can also be seen that the duration of the embellished beat is a little less than 40 centiseconds, showing that the embellishment is accomplished within the duration of a single beat.

Syntactically, rising appoggiaturas are associated almost exclusively with constituent-initial position, and most of these occurrences are in fact at the beginning of a spelling sentence. Phonologically, most rising appoggiaturas also occur on syllables with low tones (Figure 8.10 is an example). It is, however, also found to a limited extent on high-tone syllables with aspirated stops /ph th kh/ and voiceless fricative /s/ (Rose 2001:186). The very first syllable (sa) of the chant in Figure 1.2 is an example. Aspirated stops and voiceless fricatives, and Tibetan low tone, are speech sounds that are made with a relatively spread glottal aperture, and belong to Halle and Stevens’ (1971) natural phonological class of so-called spread-glottis sounds. This suggests that rising appoggiatura has to do primarily with glottal configuration and that the otherwise nicely iconic tonal conditioning (low tones can take rising appoggiatura) is, at least to a certain extent, epiphenomenal.

The spelling sentence in Figure 8.10 also shows another typical feature of chant—namely, the spoken final syllable (this is transcribed with cross noteheads and a slur to represent the gradually falling pitch of speech; in the linear musical representation, it is indicated by italics, thus: C Bb). Spoken syllables have well-defined occurrence in chant (Rose 2001:179). They are obligatory in utterance-final position, in constituents such as vowel phrases, as in the example in Figure 8.10, and also when the spelling sentence consists of a single radical, of which there are two examples, indicated by italics, in Figure 1.2. In Figure 8.10, the F0 on the final syllable falls, in a way typical for speech, from 132Hz to 109Hz, and also has a duration shorter than the normal crotchet beat.

The lama also embellishes notes with falling appoggiatura. In Audio 8.4, you will hear an example in which the first syllable of the postfix phrase is /si ta si/ (si with postfix da spells /si/). This postfix phrase spelt the last part of the much longer syllable སྣིད srid. Figure 8.11 shows the musical representation and the corresponding acoustics. The first syllable is chanted with a falling appoggiatura onto a MID (C) pitch. It can be seen that the F0 starts very high, at about 160Hz, and then, over about the first half of the vowel, falls abruptly towards the MID (that is, C) target. (At least part of this initial fall is due to factors associated with the syllable-initial /s/.) The F0 overshoots the target a little, reaching about 128Hz. It then recovers to about 132Hz, almost exactly the frequency of C at 131Hz. As with rising appoggiatura, the fall is accomplished within the duration for the beat.
The example in Figure 8.11 illustrates two more predictable features of TSC postfix phrases relating to the operator (here *da*) and the output (here the final syllable */si*/). The operator in a postfix phrase is invariably given a MID (that is, C) target crotchet note. In Figure 8.11, it can be seen that the F0 on */ta/* remains fairly stable throughout the vowel. Its mean value is 132Hz—again, very close to C at 131Hz. The duration of the syllable, 51.6 centiseconds, is also very close to the mean value of 50 centiseconds mentioned above for chanted crotchet notes.

Also predictable is the final syllable. It can be seen from Figure 8.11 that the final syllable */si/* is very short: its duration is 23.1 centiseconds, of which the vowel lasts 11.5 centiseconds. This is very close to the mean duration of such postfix-final syllables in the chanted corpus of 21.7 centiseconds. This duration is thus short of half the duration of the crotchet notes in the corpus (this is why it has been represented as a semiquaver note with an Abraham-Hornbostel
Singing the syllables: translating spelling into music in Tibetan spelling chant

All postfix-final syllables have this truncated duration. The syllable also has a fully predictable LOW (Bb) pitch. The F0 of this particular example can be seen to be at about 113Hz and is typically at a value a little lower than Bb (116.5Hz). As with the first syllable F0, the initially falling F0 is a function of the syllable-initial /s/ and can be discounted as a pitch correlation. This extra-short Bb note is thus fully predictable for the output of a postfix phrase.

It is possible that the very short duration of postfix-final syllables is related to the phonological feature of anticipation, mentioned above, whereby the input of a postfix phrase often anticipates its output. The anticipation is presumably because the shortness of the final syllable makes it difficult to hear what the resulting form really is, and therefore it is good to have already signalled it. Of course, this does not explain why the final syllable—the culmination of the whole spelling sentence—is so short in the first case! It could be that the shortness of the final syllable is to allow a breath to be taken without compromising the overall rhythm and delivery of the chant.

Figure 8.11 Example of falling appoggiatura. Above: musical representation of postfix phrase /si ta si/ Eb-C. C. Bb with falling appoggiatura on initial syllable. Below: Fundamental frequency of /si ta si/ superimposed on its wide band spectrogram.
Up and down triplets

Upwards and downwards triplets constitute two more embellishments, although they are more rare than the appoggiatura. Unlike the appoggiatura, there is no phonological restriction on the type of consonant or tone that triplets occur with, but there could be some iconicity involved in their clear conditioning by syntactic position: upwards triplets are clearly associated with input position and downwards triplets with output (Rose 2001:189–90).

Refer to Audio 8.5 to hear an example of an upwards triplet taken from a spelling sentence in Figure 8.1. The triplet, from HIGH to SUPERHIGH to HIGH (Eb to F to Eb), is on the first syllable of the vowel phrase in the spelling sentence for gling: /la kigu li/ (the vowel gigu with la spells /li/. /kigu/ is the name of the vowel symbol ^, romanised i). The musical representation and corresponding acoustics for the phrase are shown in Figure 8.12.

![Figure 8.12 Example of upwards triplet. Fundamental frequency of the vowel phrase /la gigu li/ Eb-F-Eb.C C. D-C superimposed on its wide band spectrogram. The first syllable /la/ carries an upwards triplet.](image-url)
Figure 8.12 shows that the F0 on the /la/ is at about 153Hz with a rapid mid-syllable obtrusion to about 172Hz (the rising F0 at the onset of /la/ is from a lower F0 value on the previous syllable). The expected frequencies of Eb and F are 156Hz and 175Hz respectively, so the F0 in this token is again close—within about 3Hz—to that expected from the musical pitch percept, and the centrally located obtrusion, with quasi steady-state F0 values either side, also agrees nicely with the triplet interpretation.

As far as the rest of the phrase is concerned, the remaining three beats all have a MID (C) target and their F0, at about 130Hz, can be seen to be very close to the expected 131Hz. As can be heard, the last beat has a falling appoggiatura onto C from D and the F0 corresponding to this embellishment can be easily seen. D corresponds to 147Hz, so the agreement is again very good between musical pitch and acoustics. Note that in order to produce this falling appoggiatura, the lama times its F0 fall precisely at the onset of the /i/ vowel in

![Moderato (\(\text{c. 120} \)](image)

Figure 8.13 Example of downwards triplet. Above: musical representation of the vowel phrase /sa trengbo se/ Bb-C.C.F. Eb-C-Eb with last syllable /se/ carrying a downwards triplet. Below: fundamental frequency of /sa trengbo se/ superimposed on its wide band spectrogram.
/li/, and times the necessary increase in F0 from the preceding C target so that it occurs during the initial consonant of the /li/. This is a typical strategy in speech whereby F0 changes that are not intended to signal pitch changes are timed to occur at the same time as syllable-initial consonants (Rose 1989:61–79).

An example of a downwards triplet, on the last syllable /se/ in the vowel phrase /sa trengbo se/, can be heard in Audio 8.6. This is from the spelling sentence for sel sel. The musical representation and acoustics are in Figure 8.13. It can be seen that the F0 in the last syllable vowel shows a rapid drop in its middle to about 130Hz, followed by a recovery. The F0 on either side of the drop is between about 156Hz and 150Hz, characteristic of the lama’s HIGH (Eb) pitch target.

The rest of the vowel phrase is notable for the rising appoggiatura on the initial syllable /sa/ (another case of a rising appoggiatura occurring on a syllable with a high tone, but spread-glottis initial consonant). There is also an occurrence of the SUPERHIGH (F) pitch target on the second quaver-note of the /trengbo/ vowel operator. As can be seen, the F0 reaches a peak of about 170Hz, which is near the expected frequency of 175Hz for F.

Summary

This chapter has illustrated some basic features of TSC—how the syllables of classical Tibetan are sung. In so doing, and in keeping with the theme of this volume, many aspects of sound have been invoked. Representations of sound, reflecting structure at many different levels, have been exemplified. Sound has been represented acoustically, in spectrograms and fundamental frequency curves; phonologically, in transcriptions of spelling sentences; historically, in the changes that have occurred to speech sounds still preserved in the romanisation; and perceptually, in the melody and rhythm structures of the chant. It is necessary to understand all these levels of structure to be able to describe and analyse TSC.

Another important thing demonstrated in this chapter is how TSC unites the two most important functions of sound for us—sound as speech and sound as music—so that the speech expressing the structure of the spelling is echoed and enhanced by the music. It is not surprising that speech and music relate in this way in TSC. They are both produced by the same vocal tract and are driven by the same brain (although probably not the same parts of the same brain). This is reminiscent of Pinker’s (1997:535) hypothesis that ‘music borrows some of its mental machinery from language’. The music of TSC, however, is not, as Pinker would have it (1997:529), the communicator of ‘nothing but formless emotion’. Quite the contrary: since, as I have pointed out, most of its music is predictable.
from the spelling structure, the amount of variation free to convey emotion must be limited. One can, for example, infer many aspects of the linguistic structure of a spelling sentence from the rhythm and melody of its accompanying chant.

Ethnomusicologists generally agree that Western notation is theoretically descriptively inadequate for transcribing some genres of music, but nevertheless continue to use it for pragmatic reasons:

Western notation…incorporates some of the characteristics of Western cultivated music and tends to accommodate the transcriber’s subjectivity which is usually rooted in Western cultivated styles. But Western notation can be modified and, because of the facility with which it can be used, it offers the most practical method of presenting new musical data in visual form. It forms the best basis for analysis and description of music. (Nettl 1964:128)

Its use for TSC, in conjunction with the usual set of additional symbols such as grace notes (Nettl 1964:106), can, however, be justified on very much stronger grounds than just pragmatics. There is, first, the generally extremely good agreement, exemplified above, between the acoustics and my conventionally represented melodic and rhythmic percept. The syllables in a measure do indeed have durations that correspond to the notated rhythm. With the exceptions commented on in the text, the notes transcribed with a particular pitch do indeed have the expected fundamental frequency. Second, the fact that the spelling structure (as specified by the linguistic analysis) can be put into such good correspondence with the musical structure (as represented in Western notation) can also be advanced as an argument for the adequacy of the notation and the constructs it represents. Given these kinds of agreement, it would be perverse to insist that the notation is not a good model for some aspects of TSC musical structure. Just how good can be appreciated from the quality of an utterance with pitch and duration synthesised from the musical notation. Refer to Audio 8.7 to hear a version of the chant’s first spelling sentence (sa ngada nga, nga naro ngo, ngö ~ na ngö ~) synthesised from the musical notation using Fujisaki’s (2004) command–response model. This utterance, the middle vowel phrase of which was described above, was synthesised assuming a moderato tempo of 120 crotchet notes per minute and a pitch sequence of Bb (on sa ngada) C (nga) D (nga) C (na) Bb (ro) C (ngo) D\(\cap\)C (ngö~) C (na) Bb (ngö~). Refer to Audio 8.8 to compare with the original. TSC does indeed appear to be structured largely in terms of rhythmic-melodic beats. One should not forget, also, that notation is simply a convention. One defines the convention, as I have done here, to represent as accurately as possible what are assumed to be the essential features of the performance.
There is still much to be learnt from this fascinating interaction of speech and music, not least how the results of the analysis can best be used to teach students of Tibetan Buddhism how to chant spelling authentically. The analytical approach exemplified in this chapter should, however, not blind us to the holistic significance of Tibetan spelling chant as one small part of a culture that is fighting for survival. That is, after all, where its true meaning lies.

References

Miller, R. 1956 [1979], ‘The Tibetan system of writing’, American Council of Learned Societies Program in Oriental Languages Publications Series B—Aids—Nr. 6, American Council of Learned Societies, Reprinted by University Microfilms International, Ann Arbor.

Endnotes

1. Part of a classical Tibetan passage. The chanted syllables of the passage are shown here in the script in quasi-phonetic representation. Vertical lines indicate boundaries between spelling sentences; commas indicate boundaries between spelling phrases. Forms in italics indicate spoken syllables; ~ = nasalised vowels.