Complex Science for a Complex World
Exploring Human Ecosystems with Agents
Complex Science for a Complex World
Exploring Human Ecosystems with Agents
Pascal Perez and David Batten (Editors)
Contents

List of Figures v
List of Tables ix
Foreword xi
Acknowledgments xv

Part I. Building a New Science for a Complex World
1. Complex Science for a Complex World: An Introduction 3
 Pascal Perez and David Batten
2. Towards a New Ontology of Complexity Science 21
 Roger Bradbury
3. Agents, Icons and Idols 27
 Pascal Perez
4. The Uncertain Fate of Self-Defeating Systems 57
 David Batten
5. The Structure of Social Networks 71
 David Newth
6. Integration and Implementation Sciences: Building a New Specialisation 95
 Gabriele Bammer

Part II. Exploring National Research Priorities with Agents
Viewpoint from a Practitioner 111
7. Sustainability Assessment of Housing Developments: A New Methodology 113
 Katherine A. Daniell, Ashley B. Kingsborough, David J. Malovka, Heath C. Sommerville, Bernadette A. Foley and Holger R. Maier
Viewpoint from a Defence Expert 147
8. WISDOM-II: A Network Centric Model for Warfare 149
 Ang Yang, Neville Curtis, Hussein A. Abbass, Ruhul Sarker and Michael Barlow
Viewpoint from a Policy-Maker 175
9. Managing Agricultural Pest and Disease Incursions: An Application of Agent-Based Modelling 177
 Lisa Elliston and Stephen Beare
Viewpoint from a Policy Adviser 191
10. SimDrug: A Multi-Agent System Tackling the Complexity of Illicit Drug Markets in Australia 193
 Pascal Perez, Anne Dray, A. Ritter, P. Dietze, T. Moore and L. Mazerolle

View from an Energy Expert 225

 David Batten and George Grozev

Viewpoint from a Regional Adviser 253

 Anne Dray, Pascal Perez, Christophe LePage, Patrick D’Aquino and Ian White

View from a Principal Scientist 281

13. Multiple-Use Management Strategy Evaluation for Coastal Marine Ecosystems Using InVitro 283
 A.D. McDonald, E. Fulton, L.R. Little, R. Gray, K.J. Sainsbury and V.D. Lyne

Viewpoint from a Practitioner 299

14. Rangeland Consolidation Patterns in Australia: An Agent-Based Modelling Approach 301
 Ryan R. J. McAllister, John E. Gross and Chris J. Stokes

List of Contributors 319

Index 325
List of figures

3.1. Belief-Desire-Intention (BDI) structure of a conative system 29
3.2. Passive and active perception systems. (Adapted from Ferber 1999) 31
3.3. Conative system and its two sub-systems. (Adapted from: Ferber, 1999) 33
3.4. Structure of a Consumat agent 48
3.5. Traditional cycle of interactions during a companion modelling process 52
4.1. A simulated 100-week record of attendance at El Farol 60
5.1. Random graphs 73
5.2. Example of criticality phenomena in the evolution of graphs 75
5.3. Examples of complex networks 77
5.4. Erdős-Rényi model of random graph evolution 78
5.5. Different subgraphs appear at varying threshold probabilities in a random graph (After Albert and Barabási 2002) 79
5.6. Progressive transition between regular and random graphs 80
5.7. The Ruy Lopez opening line 83
5.8. Bobby Fischer’s network of immediate opponents 84
5.9. Prisoners’ Dilemma 86
5.10. The architecture of the Norms and Meta-norms games (After Axelrod 1986) 87
5.11. Simulation results 89
6.1. The relationship between the home base and the key sectors for Integration and Implementation Sciences 101
7.1. Housing development assessment methodology 115
7.2. The complex housing development system 116
7.3. Framework of interrelated models for housing development sustainability assessment 117
7.4. The Sustainability Scale 119
7.5. Cumulative distribution of mains water use exceeding the sustainability threshold level 120
7.6. Mains water use frequency distribution and the sustainability threshold level 121
7.7. Multi-agent representation of a housing development 125
7.8. Christie Walk water model conceptualisation 129
7.9. Christie Walk CO$_2$ model conceptualisation 129
7.10. Christie Walk waste model conceptualisation 130
7.11. Christie Walk economic model conceptualisation 131
7.12. Christie Walk social model conceptualisation 132
7.13. Occupant behaviour categories for total waste production 133
7.15. Sustainability Scale Ratings for Christie Walk for the 5 indicators 136
7.16. Effect of waste production behaviour on waste sustainability 138
7.17. Effect of recycling behaviour on waste sustainability 139
7.18. Effect of water use behaviour on water sustainability 140
7.19. Effect of energy use behaviour on CO$_2$ sustainability 141
8.1. A coarse-grained view of NCMAA 152
8.2. wo-layer architecture in NCMAA 153
8.3. Influence Network for NCMAA in Warfare 155
8.4. Command and Control Hierarchy in WISDOM-II 156
8.5. Influence directions 158
8.6. Initial position 168
8.7. Damage of each force over time 168
8.8. Average degree and average path length of the blue and red communication network over time 169
8.9. Correlation coefficient between red damage and the knowledge correctness at agent level (left) and force level (right) (window size is 5) 170
9.1. Structure of the EIM model 180
9.2. Spatial visualisation of the environment: Quarantine response 181
9.3. Area infested, contractor scenario 183
9.4. Area infested, fertiliser scenario 185
9.5. Receipts per infested farm, contractor scenario 186
9.6. Receipts per infested farm, fertiliser scenario 187
10.1. SimDrug Class Diagram (designed with VisualParadigm©) 207
10.2. ‘assessNeed’ Activity Diagram (designed with VisualParadigm©) 209
10.3. ‘useDrug’ Activity Diagram (designed with VisualParadigm©) 210
10.4. ‘declareOverdose’ Activity Diagram (designed with Visual-Paradigm®) 211
10.5. Simulated Total and Fatal Overdoses over the 4-year period 213
10.6. Evolution of hot spot locations over time from initial condition (left) to final state (right) 214
10.7. Influence of outreach workers on overdose rates (left) and treated user rates (right) 216
10.8. Influence of constables on number of arrested dealers (left) and maximum dealer’s cash (right) 217
10.9. Number of users under treatment according to increasing values for wealth updating rate 218
10.10. Number of fatal overdoses derived from the base-scenario and from real data 220
11.1. Inter-connector in Australia’s National Electricity Market 230
11.2. The NEM as a Complex Adaptive System 234
11.3. Some trends in electricity market modelling 235
11.4. Electricity prices in California, 1998-2000 243
11.5. An overview of NEMSIM 244
11.6. NEMSIM GHG emissions example windows for a generator plant: tabular form (top); graphical form (bottom) 249
11.7. NEMSIM regional summary window for GHG emissions 250
12.1. Tarawa Atoll (Bonriki and Buota islands are on the lower right of the atoll) 256
12.2. Elder man in Abatao commenting on photos of economic activities 258
12.3. Example of Card Game’s flowchart 259
12.4. Partial view over an associative network 260
12.5. Overall table ranking most quoted elements during the card game 263
12.6. UML-based Class Diagram representation of the common ontology 264
12.7. AtollGame environment 268
12.8. Representation of the freshwater lens in AtollGame 269
12.9. Island 1 (left) and Island 2 (right) 272
12.10. Flowchart of financial, technical and social solutions 275
13.1. The MSE Framework 285
13.2. Estimated and actual stock sizes for the primary fishery target group (Lutjanids) 293
13.3. Relative levels of contaminant in prawns within 20 km of an outfall under the status quo and enhanced management strategies 294
13.4. Profit relative to profit at historical capacity for the port of Dampier under the range of port capacity levels allowed by the status quo and enhanced management strategies 295
14.1. Results of reference treatment in a heterogeneous rangeland system 309
14.2. Number of block sales for the reference treatment (solid line) 310
14.3. Consolidated property size distribution at the end of the simulations using reference conditions 311
14.4. Average consolidated property size response to the variable costs 312
14.5. Mean consolidated enterprise size at the start and end of 113-year simulations 313
14.6. Location of sites 315
List of tables

1.1. Agents simulated in Chapters 7-14 10
3.1. Partial list of Cognitons proposed by Ferber 30
4.1. Strategies and payoffs for homogeneous fleets 65
4.2. Fleet strategies and payoffs when information is shared 65
5.1. Example of ranking between players according to David’s score 82
5.2. Top 10 players in Fischer’s gaming network 84
7.1. Model sustainability indicators 132
8.1. The set of hyper cells in between 162
8.2. Scenario settings 167
9.1. Regional economy effect of alternative incursion scenarios 184
10.1. Influence of tested values on selected variables 215
11.1. XML fragment with Generation Technologies description 247
Foreword

Mankind has now entered the Anthropocene, the era in which human activities play as significant a role in shaping the biosphere as do natural processes. We see the signs of this in many places, perhaps most pervasively in the climate change brought on by rapid human perturbations to the planetary carbon cycle. The reaction of thoughtful governments to these signals has been to apply principles of sustainability, resilience and triple-bottom-line accounting to the problem of managing and regulating the interaction of humans and their environment. The science to underpin these efforts must understand and ultimately predict the dynamic behaviour of coupled systems embodying human behaviour and biophysical responses. Unlike the natural systems that environmental and earth sciences have traditionally addressed, these human dominated systems display learning, adaptation and complex non-linear feedbacks. They are ‘Complex Adaptive Systems’.

Traditional approaches to modelling and understanding such systems have treated the natural and human parts quite differently. Natural biophysical processes have been approached with confidence by modellers who understood that, however complex a system like the earth’s climate might be, it could still be expected to obey physical laws and its behaviour was, at least in principle, predictable. The human component, in contrast, was generally treated as entirely contingent and not subject to regular laws (with the notable exception of economics, whose practitioners make draconian simplifying assumptions about human choices with limited predictive success). This situation has changed drastically in the last decade with the growth of complexity theory and its application to human behaviour and decision making. Many aspects of human behaviour at the levels of large groups or whole societies prove to be amenable to simulation with remarkable fidelity by these techniques.

Still in its infancy, complexity theory tends to employ an eclectic collection of theories and methodologies designed to deepen our limited understanding of the properties of complex adaptive systems. Among such dynamic techniques, agent-based modelling (ABM) is being used increasingly to simulate human ecosystems. Its major advantage is an ability to generate system-wide dynamics from the interaction of a set of autonomous agents interacting in the silicon world of the computer. ABM is particularly well suited for representing social interactions and autonomous behaviours, and for studying their environmental impact at different scales. It also helps us to study the emergence of and interactions within hierarchical social groups, as well as the emergence of adaptive collective responses to changing environments and environmental management policies.
Human ecosystems constitute a subset of complex adaptive systems. They are characterised by very strong, long-term interactions between human communities and their environment. They process flows of matter, energy and information. Nowadays, research on human ecosystems straddles the social, computer and environmental sciences. It has created a space where anthropologists and sociologists meet with programmers and physicists. Until recently, such a creative space could not be found in Australia. This is exactly why the Human Ecosystems Modelling with Agents (HEMA) network was created in early 2002. A growing number of scientists needed a place to breathe in, to debate and to share ideas—a forum in the true Greek tradition.

From a handful of Australian and French scientists at the outset, the HEMA network has become an internationally recognised, steadily growing entity, closely connected to complementary groups like the European Social Simulation Association (ESSA) and the Multi-Agent-Based Simulation (MABS) community in Europe. This success has been achieved with the help of dedicated sponsors such as the Australian Department of Education, Science and Training and the French Embassy in Canberra. Several other research institutions deserve a special mention for their committed efforts: Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Centre d'etude du Machinisme Agricole du Génie Rural des Eaux et Forêts (CEMAGREF) in France, and The Australian National University (ANU) and the Commonwealth Scientific and Industrial Research Association (CSIRO) in Australia. The latter provided the backbone for the HEMA network, by way of its Centre for Complex Systems Science (CCSS) and, more specifically, the CSIRO Agent Based Modelling (CABM) working group.

This book aims to synthesise the synergistic collection of ideas and applications that have emerged from the HEMA network and the CABM working group over the last three years. In particular, it draws upon the work presented at a series of workshops co-organised by CABM and HEMA scientists. The first CABM/HEMA workshop was held in Melbourne from 11-12 July 2003. Its theme was ‘Agent-based modelling of social, economic and biophysical systems’. Then, in May 2004, the 2nd workshop was convened at The Australian National University. On this occasion, the theme was ‘Exploring human ecosystems: the next scientific challenge’. Finally, the latest workshop was held from 21-25 March 2005 in Bourg-St. Maurice, a scenic location in the French Alps. Organised by the Modèles et systèmes multi-agent pour la gestion de l’environnement et des territoires group (SMAGET), its theme was ‘Multi-agent modelling for environmental management’.
In essence, there is an unbroken line between these 3 meetings: a consistent focus on techniques for modelling and managing human ecosystems with the help of virtual agents. By nurturing interest in the application of tools and techniques from complexity theory to the sensitive issue of human intervention in various ecosystems, the HEMA network has championed this important new area of scientific enquiry among a growing community of Australian and European scientists.

John J. Finnigan
Director, Complex System Science Program
CSIRO, Canberra, Australia
Acknowledgments

This book is born from the fruitful collaboration between:

The Human Ecosystems Modelling with Agents Network (HEMA), convened by Pascal Perez; and
The CSIRO’s Agent Based Modelling Working Group (CABM), convened by David Batten

Editorial Board

Nigel Gilbert, University of Surrey, UK
Nils Ferrand, CEMAGREF, France
David Batten, CSIRO, Australia
Pascal Perez, ANU and CIRAD, Australia

Sponsors

The following sponsors supported the editing and publishing of this book:

Centre de Cooperation Internationale en
Recherche Agronomique pour le Developpement
(CIRAD)
42 rue Scheffer, 75116 Paris, France

Commonwealth Scientific and Industrial Research Organisation
(CSIRO)
Limestone Avenue, Campbell ACT 2612, Australia

Forum for European-Australian Science and Technology Cooperation
(FEAST)
National Europe Centre, ANU, Liversidge Street, Canberra ACT 0200, Australia

Ambassade de France en Australie
6 Perth Avenue, Yarralumla ACT 2600, Australia